Exercice 1

Soit n un entier naturel non nul. Calculer les sommes :

$$a = \sum_{k=0}^{n} {n \choose k}$$
 , $b = \sum_{k=0}^{n} k {n \choose k}$ et $c = \sum_{k=0}^{n} k^2 {n \choose k}$.

Tout d'abord, la formule du binôme de Newton donne :

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1^{k}}{1^{n-k}} = (1+1)^{n} \text{ donc } a = 2^{n}.$$

Pour la deuxième somme, on peut tout d'abord remarquer que :

$$\sum_{k=0}^{n} k \binom{n}{k} = \sum_{k=1}^{n} k \binom{n}{k}$$

or:

$$\forall k \in [1, n], \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$

donc:

$$b = \sum_{k=1}^{n} n \binom{n-1}{k-1}$$
 i.e. $b = n \sum_{k=1}^{n} \binom{n-1}{k-1}$.

Un décalage d'indices donne alors :

$$b = n \sum_{k=0}^{n-1} \binom{n-1}{k}$$

et le même calcul que pour a donne :

$$\sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1} \text{ donc } b = n2^{n-1}.$$

Pour la troisième somme, on a de façon analogue :

$$\sum_{k=0}^{n} k^{2} \binom{n}{k} = \sum_{k=0}^{n} (k^{2} - k + k) \binom{n}{k}$$

$$= \sum_{k=0}^{n} k(k-1) \binom{n}{k} + \sum_{k=0}^{n} k \binom{n}{k}$$

$$= \sum_{k=2}^{n} k(k-1) \binom{n}{k} + n2^{n-1}$$

$$= \sum_{k=2}^{n} k(k-1) \frac{n}{k} \frac{n-1}{k-1} \binom{n-2}{k-2} + n2^{n-1}$$

$$= n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} + n2^{n-1}$$

$$= n(n-1) \sum_{k=0}^{n-2} \binom{n-2}{k} + n2^{n-1}$$

$$= n(n-1) 2^{n-2} + n2^{n-1}$$

$$= n 2^{n-2} (n-1+2)$$

donc:

$$c = n(n+1)2^{n-2}.$$

Exercice 2

1. Soit $m \in \mathbb{N}$. Déterminer les entiers naturels k tels que :

$$\lfloor \sqrt{k} \rfloor = m.$$

2. Soit $n \ge 0$. Calculer en fonction de n:

$$u_n = \sum_{k=0}^{n^2 + 2n} \left\lfloor \sqrt{k} \right\rfloor.$$

1. Soit $m \in \mathbb{N}$ et $k \in \mathbb{N}$, on a :

$$\left\lfloor \sqrt{k} \right\rfloor = m \iff m \le \sqrt{k} < m+1$$

$$\iff m^2 \le k < (m+1)^2$$

$$\iff m^2 \le k \le (m+1)^2 - 1$$

donc:

$$\boxed{\left\lfloor \sqrt{k} \right\rfloor = m \iff k \in \llbracket m^2, m^2 + 2m \rrbracket.}$$

2. Soit $n \ge 0$, on a tout d'abord :

$$[0, n^{2} + 2n] = \{0\} \cup [1, 3] \cup [4, 8] \cup [9, 15] \cup [16, 31] \cup \dots [(n-1)^{2}, n^{2} + 2n]$$

$$= \biguplus_{m=0}^{n-1} [m^{2}, m^{2} + 2m]$$

(le symbole ci-dessus signifiant que l'union est disjointe) d'où:

$$\sum_{k=0}^{n^2+2n} \left\lfloor \sqrt{k} \right\rfloor = \sum_{m=0}^{n-1} \sum_{k=m^2}^{m^2+2m} \left\lfloor \sqrt{k} \right\rfloor$$

$$= \sum_{m=0}^{n-1} \sum_{k=m^2}^{m^2+2m} m$$

$$= \sum_{m=0}^{n-1} m(2m+1)$$

$$= 2 \sum_{m=0}^{n-1} m^2 + \sum_{m=0}^{n-1} m$$

$$= 2 \frac{(n-1)n(2(n-1)+1)}{6} + \frac{(n-1)n}{2}$$

$$= (n-1)n \left(\frac{2n-1}{3} + \frac{1}{2}\right)$$

$$= (n-1)n \frac{4n-2+3}{6}$$

donc:

$$u_n = \frac{(n-1)n(4n+1)}{6}.$$

Exercice 3

On considère la fonction φ donnée pour tout réel x par :

$$\varphi(x) = \ln\left(x + \sqrt{x^2 + 1}\right).$$

- 1. Étudier avec soin le domaine de définition et le domaine de dérivabilité \mathscr{D} de φ .
- 2. Vérifier que φ est impaire.
- **3.** Calculer l'expression de $\varphi'(x)$ pour tout réel x de \mathscr{D} .
- 4. Déterminer les limites de ϕ aux bornes de son intervalle de définition puis dresser son tableau de variations.
- 1. ▶ Soit $x \in \mathbb{R}$. Notons \mathcal{D}_0 le domaine de définition de f alors, sachant que la fonction racine carrée est définie sur \mathbb{R}_+ et que la fonction ln est définie sur \mathbb{R}_+^* , on a :

$$x \in \mathcal{D}_0 \iff x^2 + 1 \ge 0 \text{ et } x + \sqrt{x^2 + 1} > 0.$$

La condition $x^2 + 1 \ge 0$ est toujours vérifiée. D'autre part, on a par croissance de la fonction racine carrée :

$$\sqrt{x^2+1} > \sqrt{x^2} = |x| \text{ donc } x + \sqrt{x^2+1} > x + |x| \ge 0$$

donc la fonction φ est définie sur \mathbb{R} .

▶ La fonction $x \mapsto x^2 + 1$ est polynomiale donc dérivable sur \mathbb{R} et ses valeurs sont dans \mathbb{R}_+^* .

La fonction racine carrée est dérivable sur \mathbb{R}_+^* donc, par composition, la fonction $x \mapsto \sqrt{x^2 + 1}$ est dérivable sur \mathbb{R} (et à valeurs dans \mathbb{R}_+).

La fonction $x \mapsto x$ est dérivable sur $\mathbb R$ donc, par somme, la fonction $x \mapsto x + \sqrt{x^2 + 1}$ est dérivable sur $\mathbb R$ La fonction ln est dérivable sur $\mathbb R$ 0, $+\infty$ [et l'on a vu ci-dessus que :

$$\forall x \in \mathbb{R}, \ x + \sqrt{x^2 + 1} > 0$$

donc, par composition, la fonction ϕ est dérivable sur $\mathbb{R}.$

2. Pour tout $x \in \mathbb{R}$, on a $-x \in \mathbb{R}$ et:

$$\varphi(-x) = \ln\left(-x + \sqrt{(-x)^2 + 1}\right)$$

$$= \ln\left(\frac{\left(-x + \sqrt{x^2 + 1}\right)\left(x + \sqrt{x^2 + 1}\right)}{\left(x + \sqrt{x^2 + 1}\right)}\right)$$

$$= \ln\left(\frac{x^2 + 1 - x^2}{x + \sqrt{x^2 + 1}}\right)$$

$$= \ln\left(\frac{1}{x + \sqrt{x^2 + 1}}\right)$$

$$= -\ln\left(x + \sqrt{x^2 + 1}\right)$$

$$= -\varphi(x)$$

et ϕ est impaire. On peut donc se contenter de l'étudier sur $[0, +\infty[$.

3. Posons tout d'abord $u(x) = x + \sqrt{x^2 + 1}$ alors, pour tout $x \in \mathbb{R}$, on a :

$$u'(x) = 1 + \frac{2x}{2\sqrt{x^2 + 1}}$$
 i.e. $u'(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$.

On en déduit que, pour tout $x \in \mathbb{R}$, on a :

$$\varphi'(x) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$$

d'où:

$$\varphi'(x) = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} \left(x + \sqrt{x^2 + 1} \right)}$$

puis en simplifiant:

$$\phi'(x) = \frac{1}{\sqrt{x^2 + 1}}.$$

4. Par opérations sur les limites, on a :

$$x + \sqrt{x^2 + 1} \xrightarrow[x \to +\infty]{} + \infty \text{ et } \ln(t) \xrightarrow[t \to +\infty]{} + \infty$$

donc, par composition de limites:

$$\varphi(x) \xrightarrow[x \to +\infty]{} +\infty.$$

On peut alors dresser le tableau de variations de ϕ .

x	$-\infty$		0		+∞
$\varphi'(x)$		+	1	+	
φ(x)	-∞-		→0-		→ +∞