Notions abordées et objectifs

- ► Algèbre linéaire
 - o Réviser tout le programme de première année.
 - ∘ Notion de somme directe de $k \ge 2$ sous-espaces vectoriels.
 - o Notion de trace d'une matrice, propriétés.
 - o Changement de bases.
 - Polynômes annulateurs.
 - Valeurs propres, vecteurs propres, sous-espaces propres.
 - Notion d'endomorphisme ou de matrice diagonalisable.
 - Condition nécessaire et suffisante de diagonalisabilité (sous-espaces propres supplémentaires, somme des dimensions des sous-espaces propres).
 - Condition suffisante de diagonalisabilité (n valeurs propres distinctes avec E de dimension n, ou n valeurs propres distinctes dans $\mathcal{M}_n(\mathbb{R})$).

► Note aux colleurs :

- Les longueurs des exercices de cours sont inégales, ne pas hésiter à en poser plusieurs.
- Le programme limite les notions d'éléments propres au cas de la dimension finie.

▶ Les exercices suivants sont à savoir refaire sans hésitation :

- **1.** Soit $f \in \mathcal{L}(E)$ tel que, pour tout $\mathbf{u} \in E$, les vecteurs \mathbf{u} et $f(\mathbf{u})$ soient liés. Montrer que f est une homothétie (*i.e.* il existe $\lambda \in \mathbb{R}$ tel que $f = \lambda \operatorname{id}_E$).
- 2. Montrer que toute matrice A de $\mathcal{M}_n(\mathbb{R})$ admet un polynôme annulateur.
- 3. On considère $n \ge 2$ et $\varphi : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$, $M \mapsto {}^t M$. Déterminer un polynôme annulateur de φ et en déduire les valeurs propres de φ .
- **4.** Soit A et B deux matrices semblables de $\mathcal{M}_n(\mathbb{R})$.
 - *a.* Montrer que Sp(A) = Sp(B) et que les sous-espaces propres de A et B ont même dimension.
 - b. Montrer que tout polynôme annulateur de A est annulateur de B.
- **5.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente. Montrer que $Sp(A) = \{0\}$.
- **6.** Déterminer les matrices de $\mathcal{M}_2(\mathbb{R})$ dont les valeurs propres sont les éléments diagonaux.
- 7. Pour tout t réel, on considère la matrice $M(t) = \begin{pmatrix} 3 & 1 & 1+t \\ 0 & 2 & -1-t \\ 1 & 1 & 4+2t \end{pmatrix}$.
 - a. Déterminer les valeurs propres de la matrice $\mathbf{M}(t)$ en fonction de la valeur de t.
 - \boldsymbol{b} . Déterminer les valeurs de t pour lesquelles la matrice $\mathbf{M}(t)$ est diagonalisable.