Exercice 3-2

1. Pour tout $n \in \mathbb{N}^*$, on considère la fonction :

$$f_n:]0, +\infty[\to \mathbb{R}, \ x \mapsto x - n + \frac{n}{2} \ln(x).$$

Étudier les variations et les limites de la fonction f_n (on ne demande pas de représentation graphique).

- **2.** Justifier que, pour tout $n \in \mathbb{N}^*$, il existe un unique réel α_n vérifiant $f_n(\alpha_n) = 0$.
- **3.** Montrer que, pour tout $n \in \mathbb{N}^*$, on a : $1 \le \alpha_n \le e^2$.
- **4.** Soit $n \in \mathbb{N}^*$. Exprimer $\ln(\alpha_n)$ sous la forme $p_n + q_n \alpha_n$ avec p_n et q_n des fractions dépendant de n.
- **5.** Que peut-on dire du réel $f_{n+1}(\alpha_n)$?
- **6.** En déduire la monotonie de la suite (α_n) .
- 7. Montrer que la suite (α_n) converge puis déterminer sa limite.
- **1.** Soit $n \in \mathbb{N}^*$. Les fonctions :

$$x \mapsto x - n$$
 et $x \mapsto \ln(x)$

sont dérivables sur $]0,+\infty[$ donc, par combinaison linéaire, f_n est dérivable sur cet intervalle et :

$$\forall x \in]0, +\infty[, f'_n(x) = 1 + \frac{n}{2} \frac{1}{x} > 0$$

donc f_n est strictement croissante sur son intervalle de définition.

On a de plus:

$$\ln(x) \xrightarrow[x \to 0^+]{} -\infty$$
 donc $f_n(x) \xrightarrow[x \to 0^+]{} -\infty$

et:

$$f_n(x) = x \left(1 - \frac{n}{x} + \frac{n}{2} \frac{\ln(x)}{x} \right)$$

or par croissances comparées :

$$\frac{\ln(x)}{x} \xrightarrow[x \to +\infty]{} 0$$

donc la parenthèse tend vers 1 puis :

$$f_n(x) \xrightarrow[x \to +\infty]{} +\infty.$$

On peut résumer ces résultat dans le tableau de variations de f_n .

x	0	+∞
$f_n'(x)$		+
$f_n(x)$	$-\infty$	+∞

2. La fonction f_n est continue et strictement croissante sur l'intervalle $]0,+\infty[$ donc elle réalise une bijection de $]0,+\infty[$ vers $f(]0,+\infty[)=\mathbb{R}$. En particulier, l'équation $f_n(x)=0$ admet exactement une solution réelle.

Donc il existe un unique réel α_n vérifiant $f_n(\alpha_n) = 0$.

Remarque – à ce stade de l'année, j'attends la mention de la continuité, de la stricte monotonie et du fait que f_n prenne des valeurs négatives et positives.

3. On a $f_n(1) = 1 - n + \frac{n}{2} \ln(1) = 1 - n$ donc $f_n(1) \le 0$.

On a
$$f_n(e^2) = e^2 - n + \frac{n}{2}\ln(e^2) = e^2 \text{ donc } f_n(e^2) \ge 0.$$

=2

Puisque f_n est croissante sur $]0,+\infty[$, on en déduit :

$$1 \leqslant \alpha_n \leqslant e^2.$$

4. La relation $f_n(\alpha_n) = 0$ s'écrit :

$$\alpha_n - n + \frac{n}{2}\ln(\alpha_n) = 0$$

d'où:

$$\frac{n}{2}\ln(\alpha_n) = n - \alpha_n$$

puis:

$$\ln(\alpha_n) = 2 - \frac{2}{n}\alpha_n.$$

5. On a:

$$f_{n+1}(\alpha_n) = \alpha_n - (n+1) + \frac{n+1}{2} \ln(\alpha_n)$$

$$= \alpha_n - (n+1) + \frac{n+1}{2} \left(2 - \frac{2}{n} \alpha_n\right)$$

$$= \alpha_n - \frac{n+1}{n} \alpha_n$$

$$= -\frac{1}{n} \alpha_n$$

or $\alpha_n \ge 1$ donc :

$$f_{n+1}(\alpha_n) < 0.$$

6. Soit $n \in \mathbb{N}^*$, on a :

$$f_{n+1}(\alpha_n) < 0 = f_{n+1}(\alpha_{n+1})$$

or f_{n+1} est croissante donc :

$$\alpha_n < \alpha_{n+1}$$

donc la suite (α_n) est strictement croissante.

7. D'après les questions 3. et 6., la suite (α_n) est croissante et majorée donc (α_n) converge Si l'on note ℓ la limite de (α_n) alors la relation :

$$\ln(\alpha_n) = 2 - \frac{2}{n}\alpha_n$$

donne en passant à la limite et par continuité de la fonction ln :

$$\ln(\ell) = 2 - 0$$

donc la limite est e²:

$$\alpha_n \xrightarrow[n \to +\infty]{} e^2$$
.

Exercice 3-3

On considère une suite u définie par son premier terme, vérifiant $u_0 > 1$, et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + e^{-u_n}.$$

- **1.** Montrer que : $\forall n \in \mathbb{N}, u_n > 1$.
- 2. Étudier la monotonie de la suite u.
- 3. Montrer que la suite u diverge vers $+\infty$. *Indication :* on pourra par exemple raisonner par l'absurde.
- **4.** Justifier le fait que : $e^{e^{-u_n}} 1 \sim e^{-u_n}$.
- 5. En déduire la limite de : $e^{u_{n+1}} e^{u_n}$.
- **6.** En exploitant le lemme de Cesàro, montrer que : $e^{u_n \ln(n)} \xrightarrow[n \to +\infty]{} 1$.
- 7. En déduire : $u_n \sim \ln(n)$.
- 1. Montrons par récurrence sur l'entier $n \in \mathbb{N}$, la propriété :

$$\mathcal{P}(n)$$
: « $u_n > 1$ ».

- On a par hypothèse $u_0 > 1$ d'où $\mathcal{P}(0)$.
- Soit $n \in \mathbb{N}$ tel que l'on ait $\mathcal{P}(n)$.

L'hypothèse de récurrence donne $u_n > 1$. Comme $e^{-u_n} > 0$, on en déduit :

$$u_{n+1} = u_n + e^{-u_n} > 1$$

et l'on a $\mathcal{P}(n+1)$.

• Par récurrence, on a $\mathcal{P}(n)$ pour tout $n \in \mathbb{N}$ c'est-à-dire :

$$\forall n \in \mathbb{N}, \ u_n > 1.$$

2. Soit $n \in \mathbb{N}$:

$$u_{n+1} - u_n = e^{-u_n} > 0$$
,

donc la suite *u* est strictement croissante.

3. Comme la suite u est croissante, soit elle converge, soit elle diverge vers $+\infty$. Supposons que la suite u converge et notons ℓ sa limite, alors :

$$u_n \xrightarrow[n \to +\infty]{} \ell$$
 et $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$.

D'autre part, on a :

$$e^{-x} \xrightarrow[x \to \ell]{} e^{-\ell} \text{ donc } e^{-u_n} \xrightarrow[n \to +\infty]{} e^{-\ell}.$$

On en déduit la relation :

$$\ell = \ell + e^{-\ell}$$
 i.e. $e^{-\ell} = 0$.

c'est impossible. Donc u ne converge pas.

On en déduit que |u| diverge vers $+\infty$.

4. On a:

$$u_n \xrightarrow[n \to +\infty]{} +\infty \text{ et } e^{-x} \xrightarrow[x \to +\infty]{} 0,$$

donc:

$$e^{-u_n} \xrightarrow[n \to +\infty]{} 0.$$

On sait que pour toute suite $(x_n)_{n\in\mathbb{N}}$ de limite nulle, on a :

$$e^{x_n} - 1 \sim x_n$$

donc:

$$e^{e^{-u_n}}-1\sim e^{-u_n}.$$

5. Soit $n \in \mathbb{N}$, on a :

$$e^{u_{n+1}} - e^{u_n} = e^{u_n + e^{-u_n}} - e^{u_n}$$

$$= e^{u_n} e^{e^{-u_n}} - e^{u_n}$$

$$= e^{u_n} \left(e^{e^{-u_n}} - 1 \right),$$

ce qui donne d'après la question précédente :

 $e^{u_{n+1}} - e^{u_n} \sim e^{u_n} \times e^{-u_n}$

soit:

 $e^{u_{n+1}} - e^{u_n} \sim 1.$

d'où:

$$e^{u_{n+1}} - e^{u_n} \xrightarrow[n \to +\infty]{} 1.$$

6. On applique le lemme de Cesaro à la suite $(e^{u_{n+1}} - e^{u_n})_{n \in \mathbb{N}}$ qui converge vers 1 donc :

$$\frac{1}{n} \sum_{k=0}^{n-1} (e^{u_{k+1}} - e^{u_k}) \xrightarrow[n \to +\infty]{} 1,$$

or par télescopage:

$$\sum_{k=0}^{n-1} (e^{u_{k+1}} - e^{u_k}) = \sum_{k=0}^{n-1} e^{u_{k+1}} - \sum_{k=0}^{n-1} e^{u_k}$$

$$= \sum_{k=1}^{n} e^{u_k} - \sum_{k=0}^{n-1} e^{u_k}$$

$$= e^{u_n} + \sum_{k=1}^{n-1} e^{u_k} - e^{u_0} - \sum_{k=1}^{n-1} e^{u_k}$$

$$= e^{u_n} - e^{u_0}$$

d'où:

$$\frac{1}{n}e^{u_n} - \frac{1}{n}e^{u_0} \xrightarrow[n \to +\infty]{} 1.$$

Comme:

$$\frac{1}{n}e^{u_0}\xrightarrow[n\to+\infty]{}0,$$

il s'ensuit:

$$\frac{1}{n}e^{u_n}\xrightarrow[n\to+\infty]{}1.$$

or:

$$\frac{1}{n}e^{u_n} = \frac{e^{u_n}}{e^{\ln(n)}}$$
$$= e^{u_n - \ln(n)}$$

donc:

$$e^{u_n-\ln(n)} \xrightarrow[n \to +\infty]{} 1.$$

7. La question précédente donne :

$$u_n - \ln(n) \xrightarrow[n \to +\infty]{} 0,$$

d'où a fortiori:

$$\frac{u_n - \ln(n)}{\ln(n)} \xrightarrow[n \to +\infty]{} 0,$$

c'est-à-dire:

$$\frac{u_n}{\ln(n)} - 1 \xrightarrow[n \to +\infty]{} 0,$$

ce qui donne :

$$u_n \sim \ln(n)$$
.