- 1 ▶ Pour tout entier $p \ge 3$ et tout réel $x \in [0,1]$, on pose : $f_p(x) = x^p px + 1$.
 - **a.** Étudier les variations de f_p sur [0,1].

La fonction f_p est polynomiale donc dérivable sur [0,1] et :

$$\forall x \in [0,1], f_p'(x) = px^{p-1} - p \le 0.$$

De plus, f'_p ne s'annule qu'en 0.

Donc f_p est strictement décroissante sur [0,1].

x	0	1
$f_p'(x)$	_	
$f_p(x)$	1	2-p

b. En déduire que l'équation $f_p(x) = 0$ admet une et une seule solution dans]0,1[; on note x_p cette solution.

La fonction f_p est **continue** et **strictement décroissante** sur [0,1] donc elle réalise une bijection de [0,1] sur $f_p([0,1]) = [2-p,1]$.

Puisque $p \ge 3$, on a 2-p < 0 donc $0 \in [2-p,1]$ donc il existe un unique $x \in [0,1]$ tel que f(x) = 0.

De plus f(0) > 0 et f(1) < 0 donc $x \in]0, 1[$.

Autre rédaction possible -

La fonction f_p est **continue** et **strictement décroissante** sur [0,1] et l'on a :

$$f_p(0) = 1 > 0$$
 et $f_p(1) = 2 - p < 0$ (car $p \ge 3$).

D'après le (corollaire du) théorème des valeurs intermédiaires, l'équation $f_p(x) = 0$ admet une unique solution dans l'intervalle]0,1[*i.e.* il existe un unique $x \in]0,1[$ tel que $f_p(x) = 0$.

c. Calculer $f_{p+1}(x_p)$ puis en déduire que $f_{p+1}(x_p) < 0$.

On a:

$$f_{p+1}(x_p) = x_p^{p+1} - (p+1)x_p + 1$$

$$= x_p^{p+1} - (x_p^p + 1) - x_p + 1$$

$$= \underbrace{x_p^p}_{>0} \underbrace{(x_p - 1)}_{<0} - \underbrace{x_p}_{>0}$$

$$< 0.$$

d. Montrer que la suite (x_p) converge.

Soit $p \in \mathbb{N}$, on a $f_{p+1}(x_p) < 0$ et $f_{p+1}(x_{p+1}) = 0$ donc $f_{p+1}(x_p) < f_{p+1}(x_{p+1})$ or f_{p+1} est décroissante donc $x_p > x_{p+1}$.

Donc la suite (x_p) est **décroissante** or elle est **minorée** (par 0) donc la suite (x_p) converge.

2 ► On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_1 = 2$, $u_2 = 1$ et la relation de récurrence :

$$\forall n \ge 2, \ u_{n+1} = \frac{u_n}{1 + u_n \sqrt{u_n u_{n-1}}}.$$

On admet que la suite $(u_n)_{n\geq 1}$ est bien définie et strictement positive.

a. Montrer que la suite $(u_n)_{n\geq 1}$ converge.

Soit $n \in \mathbb{N}$. Puisque $u_n \neq 0$, on peut écrire :

$$\frac{u_{n+1}}{u_n} = \frac{1}{1 + u_n \sqrt{u_n u_{n-1}}}$$

et la suite u étant strictement positive, on en déduit :

$$u_n \sqrt{u_n u_{n-1}} > 0 \text{ donc } \frac{u_{n+1}}{u_n} < 1.$$

Puisque $u_n > 0$, cela conduit à $u_{n+1} < u_n$.

Donc la suite (u_n) est **décroissante** or elle est **minorée** (par 0) donc la suite (u_n) converge.

b. Montrer que la limite de la suite $(u_n)_{n\geq 1}$ est 0.

Notons ℓ la limite de la suite (u_n) , on a alors :

$$u_{n-1} \xrightarrow[n \to +\infty]{} \ell$$
, $u_n \xrightarrow[n \to +\infty]{} \ell$, $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$

d'où, par passage à la limite dans la relation de récurrence de la suite :

$$\ell = \frac{\ell}{1 + \ell \sqrt{\ell^2}}$$

d'où (sachant que $\ell \ge 0$ puisque u est positive) :

$$\ell + \ell^3 = \ell$$

ce qui donne $\ell = 0$. Donc :

$$u_n \xrightarrow[n \to +\infty]{} 0.$$

c. On admet que : $\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} \xrightarrow[n \to +\infty]{} 2.$

En utilisant le lemme de Cesàro, montrer que $u_n \sim \frac{1}{\sqrt{2n}}$.

Le lemme de Cesàro donne :

$$\frac{1}{n}\sum_{k=1}^{n} \left(\frac{1}{u_{k+1}^2} - \frac{1}{u_k^2}\right) \xrightarrow[n \to +\infty]{} 2$$

d'où par télescopage:

$$\frac{1}{n} \left(\frac{1}{u_{n+1}^2} - \frac{1}{u_1^2} \right) \xrightarrow[n \to +\infty]{} 2.$$

Puisque $\frac{1}{n} \frac{1}{u_1^2} \xrightarrow[n \to +\infty]{} 0$, on en déduit :

$$\frac{1}{n} \frac{1}{u_{n+1}^2} \xrightarrow[n \to +\infty]{} 2$$

donc (en décalant l'indice):

$$u_{n+1}^2 \sim \frac{1}{2n}$$
 i.e. $u_n^2 \sim \frac{1}{2(n-1)} \sim \frac{1}{2n}$

donc:

$$u_n \sim \frac{1}{\sqrt{2n}}$$
.