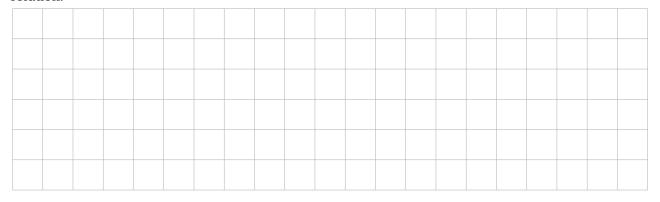
OM:
OM:

- 1 ▶ Pour tout entier $p \ge 3$ et tout réel $x \in [0,1]$, on pose : $f_p(x) = x^p px + 1$.
 - \boldsymbol{a} . Étudier les variations de f_p sur [0,1].

 \pmb{b} . En déduire que l'équation $f_p(x)=0$ admet une et une seule solution dans]0,1[; on note x_p cette solution.



 ${\it c.}$ Calculer $f_{p+1}(x_p)$ puis en déduire que $f_{p+1}(x_p) < 0$.

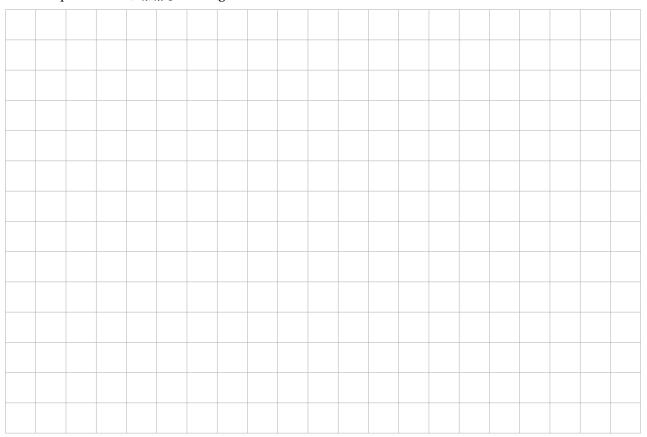
d. Montrer que la suite (x_p) converge.

 $2 \triangleright \ \ \mbox{On considère la suite} \ (u_n)_{n \in \mathbb{N}^*}$ définie par $u_1 = 2, \ u_2 = 1$ et la relation de récurrence :

$$\forall n \ge 2, \ u_{n+1} = \frac{u_n}{1 + u_n \sqrt{u_n u_{n-1}}}.$$

On admet que la suite $(u_n)_{n\geqslant 1}$ est bien définie et strictement positive.

a. Montrer que la suite $(u_n)_{n \ge 1}$ converge.



b. Montrer que la limite de la suite $(u_n)_{n \ge 1}$ est 0.

c. On admet que : $\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} \xrightarrow[n \to +\infty]{} 2.$

En utilisant le lemme de Cesàro, montrer que $u_n \sim \frac{1}{\sqrt{2n}}$.

