Exercice 1 (d'après oral ESCP)

1. On considère un réel a > 0 et la suite $(u_n)_{n \ge 0}$ définie en posant $u_0 = a$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{n}{u_n}.$$

- **a.** Montrer que la suite $(u_n)_{n\geqslant 0}$ est à valeurs strictement positives et est croissante.
- **b.** Montrer que la suite $(u_n)_{n\geqslant 0}$ diverge vers $+\infty$.
- c. Écrire en python une fonction seuil(a, s) de paramètres a et s qui considère la suite dans le cas où le premier terme vaut a et qui renvoie la plus petite valeur de n telle que $u_n >$ s. Par exemple :

Cet exemple signifie que pour a = 2, on a $u_9 \le 10$ et $u_{10} > 10$.

d. Montrer que, pour tout entier $n \ge 0$, on a :

$$u_{n+1}^2 = a^2 + \sum_{k=1}^n \frac{k^2}{u_k^2} + n(n+1).$$

- e. En déduire un équivalent de u_n lorsque n tend vers +∞.
- 2. On considère une suite $(a_n)_{n\geqslant 0}$ de réels strictement positifs et l'on définit la suite $(u_n)_{n\geqslant 0}$ en posant $u_0=a_0$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{a_n}{u_n}.$$

- a. Montrer que si la suite $(u_n)_{n\geq 0}$ converge alors la suite $(a_n)_{n\geq 0}$ converge vers 0.
- **b.** Montrer que, pour tout entier $n \ge 1$, on a :

$$u_n^2 = a_0^2 + \sum_{k=0}^{n-1} \frac{a_k^2}{u_k^2} + 2\sum_{k=0}^{n-1} a_k.$$

c. En déduire que la suite $(u_n)_{n\geqslant 0}$ converge si et seulement si la série $\sum_{n\geqslant 0}a_n$ converge.

d. On s'intéresse au cas où $a_n = r^n$ avec $r \in]0,1[$.

Justifier la convergence de la suite $(u_n)_{n\geqslant 0}$ vers une limite que l'on notera ℓ .

Donner un équivalent de $\ell^2 - u_n^2$ lorsque n tend vers $+\infty$.

Correction -

1. *a.* Montrons par récurrence sur l'entier *n*, la propriété :

$$\mathcal{P}(n): \ \text{$<$} u_n \leqslant u_{n+1} \text{$>$}.$$

• Tout d'abord, on a $u_0 = a > 0$. De plus :

$$u_1 = u_0 + \frac{0}{u_0}$$
 donc $u_0 \le u_1$

donc $\mathcal{P}(0)$ est vraie.

• Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ soit vraie.

Par $\mathcal{P}(n)$, on a $u_n > 0$ donc : $u_{n+1} \ge u_n > 0$.

De plus:

$$u_{n+2} = u_{n+1} + \frac{n+1}{u_{n+1}} \geqslant u_{n+1}$$

donc $\mathcal{P}(n+1)$ est vraie.

• Par récurrence, on en déduit que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Donc la suite $(u_n)_{n\geqslant 0}$ est à valeurs strictement positives et est croissante.

b. Supposons que la suite $(u_n)_{n\geqslant 0}$ soit convergente de limite ℓ alors :

$$n = u_n \left(u_{n+1} - u_n \right) \xrightarrow[n \to +\infty]{} \ell \times (\ell - \ell) = 0$$

ce qui est absurde.

La suite est donc croissante et non convergente donc $|(u_n)_{n\geqslant 0}$ diverge vers $+\infty$.

```
def seuil(a, s):
    n = 0
    u = a
    while u <= s:
        u = u + n/u
        n = n + 1
    return n</pre>
```

d. Soit $n \in \mathbb{N}$. En élevant au carré la relation de récurrence vérifiée par la suite, on a :

$$u_{n+1}^2 = u_n^2 + 2n + \frac{n^2}{u_n^2}$$

d'où:

$$\sum_{k=0}^{n} \left(u_{k+1}^2 - u_k^2 \right) = \sum_{k=0}^{n} \left(2k + \frac{k^2}{u_k^2} \right)$$

puis par télescopage :

$$u_{n+1}^2 - u_0^2 = 2\sum_{k=0}^n k + \sum_{k=0}^n \frac{k^2}{u_k^2}$$
$$= 2\frac{n(n+1)}{2} + 0 + \sum_{k=1}^n \frac{k^2}{u_k^2}$$

or $u_0 = a$ donc :

$$u_{n+1}^2 = a^2 + \sum_{k=1}^n \frac{k^2}{u_k^2} + n(n+1).$$

e. Tout d'abord, la relation précédente donne :

$$\forall k \in \mathbb{N}, \ u_{k+1}^2 \ge k(k+1) \ i.e. \ \forall k \in \mathbb{N}^*, \ u_k^2 \ge (k-1)k$$

donc:

$$\sum_{k=1}^{n} \frac{k^2}{u_k^2} \le \frac{1}{u_1^2} + \sum_{k=2}^{n} \frac{k^2}{(k-1)k} = \frac{1}{u_1^2} + \sum_{k=1}^{n} \frac{k}{k-1}$$

or $\frac{k}{k-1} \le 2$ donc:

$$u_{n+1}^2 \le a^2 + \frac{1}{u_1^2} + \sum_{k=2}^n 2 + n(n+1) = a^2 + \frac{1}{u_1^2} + 2(n-1) + n(n+1).$$

D'autre part, la relation de la question précédente donne :

$$u_{n+1}^2 \geqslant n(n+1),$$

d'où:

$$n(n+1) \le u_{n+1}^2 \le a^2 + \frac{1}{u_1^2} + \sum_{k=2}^n 2 + n(n+1) = a^2 + \frac{1}{u_1^2} + 2(n-1) + n(n+1)$$

puis:

$$1 \le \frac{u_{n+1}^2}{n(n+1)} \le \frac{1}{n(n+1)} \left(a^2 + \frac{1}{u_1^2} \right) + \frac{2(n-1)}{n(n+1)} + 1$$

et le terme de droite tend vers 1.

Donc, par théorème d'encadrement :

$$\frac{u_{n+1}^2}{n(n+1)} \xrightarrow[n \to +\infty]{} 1 \text{ donc } \frac{u_n^2}{(n-1)n} \xrightarrow[n \to +\infty]{} 1.$$

On en déduit que $u_n^2 \sim n^2$ puis :

$$u_n \sim n$$
.

2. *a.* La relation entre les deux suites donne pour tout $n \ge 0$:

$$a_n = u_n u_{n+1} - u_n^2.$$

Si la suite $(u_n)_{n \ge 0}$ converge vers ℓ alors :

$$u_n u_{n+1} - u_n^2 \xrightarrow[n \to +\infty]{} 0 \text{ donc } \boxed{a_n \xrightarrow[n \to +\infty]{} 0.}$$

b. Soit $n \in \mathbb{N}^*$. En élevant au carré la relation de récurrence vérifiée par la suite, on a :

$$u_{n+1}^2 = u_n^2 + 2a_n + \frac{a_n^2}{u_n^2}$$

d'où:

$$\sum_{k=0}^{n-1} \left(u_{k+1}^2 - u_k^2 \right) = \sum_{k=0}^{n-1} \left(2a_k + \frac{a_k^2}{u_k^2} \right)$$

puis par télescopage :

$$u_n^2 - u_0^2 = 2\sum_{k=0}^{n-1} a_k + \sum_{k=0}^{n-1} \frac{a_k^2}{u_k^2}$$

or $u_0 = a_0$ donc :

$$u_n^2 = a_0^2 + \sum_{k=0}^{n-1} \frac{a_k^2}{u_k^2} + 2\sum_{k=0}^{n-1} a_k.$$

c. Tout d'abord, la relation précédente donne :

$$\forall n \geqslant 1, \ 2\sum_{k=0}^{n-1} a_k \leqslant u_n.$$

- Si la suite (u_n) converge alors elle est bornée donc il en est de même de la suite des sommes partielles de la série $\sum a_n$ or il s'agit d'une série à termes positifs donc cette série converge.
- Réciproquement, supposons la série $\sum a_n$ convergente. En particulier, on a : $a_n \xrightarrow[n \to +\infty]{} 0$.

On en déduit que $0 \le a_n^2 \le a_n$ à partir d'un certain rang donc la série $\sum a_n^2$ converge.

Par ailleurs, une récurrence facile montre que la suite (u_n) est croissante donc minorée par u_0 ce qui conduit à l'inégalité :

$$u_n^2 \le a_0^2 + \frac{1}{u_0^2} \sum_{k=0}^{n-1} a_k^2 + 2 \sum_{k=0}^{n-1} a_k$$

et la convergence des séries $\sum a_n$ et $\sum a_n^2$ montre que la suite (u_n^2) est majorée donc la suite (u_n) est majorée or elle est croissante donc elle converge.

Donc la suite $(u_n)_{n\geqslant 0}$ converge si et seulement si la série $\sum_{n\geqslant 0} a_n$ converge.

d. Puisque 0 < r < 1, la série $\sum r^k$ converge donc, d'après la question précédente, la suite $(u_n)_{n \ge 0}$ converge. On note ℓ sa limite.

On a pour tout $n \ge 1$:

$$u_n^2 = a_0^2 + \sum_{k=0}^{n-1} \frac{a_k^2}{u_k^2} + 2\sum_{k=0}^{n-1} a_k$$

d'où par passage à la limite :

$$\ell^2 = a_0^2 + \sum_{k=0}^{+\infty} \frac{a_k^2}{u_k^2} + 2\sum_{k=0}^{+\infty} a_k$$

et par différence de ces deux dernières relations :

$$\ell^2 - u_n^2 = \sum_{k=n}^{+\infty} \frac{a_k^2}{u_k^2} + 2\sum_{k=n}^{+\infty} r^k$$

soit:

$$\ell^2 - u_n^2 = \sum_{k=n}^{+\infty} \frac{a_k^2}{u_k^2} + 2\frac{r^n}{1-r}$$

d'où:

$$\frac{(\ell^2 - u_n^2)(1 - r)}{2r^n} = \frac{1 - r}{2r^n} \sum_{k=-n}^{+\infty} \frac{a_k^2}{u_k^2} + 1.$$

On a:

$$0 \le \frac{1-r}{2r^n} \sum_{k=n}^{+\infty} \frac{a_k^2}{u_k^2} \le \frac{1-r}{2r^n} \frac{1}{u_0^2} \sum_{k=n}^{+\infty} r^{2k} = \frac{1-r}{2r^n} \frac{1}{u_0^2} \frac{r^{2n}}{1-r^2}$$

ce qui conduit à :

$$1 \le \frac{(\ell^2 - u_n^2)(1 - r)}{2r^n} \le 1 + \frac{1}{2r^n} \frac{1}{u_0^2} \frac{r^{2n}}{1 + r}.$$

Le terme de droite tend vers 1 donc, par théorème d'encadrement :

$$\frac{(\ell^2 - u_n^2)(1-r)}{2r^n} \xrightarrow[n \to +\infty]{} 1 \text{ i.e. } \boxed{\ell^2 - u_n^2 \sim \frac{2r^n}{1-r}}.$$

Exercice 2 (d'après oral Mines-Ponts PSI)

- 1. Étudier les variations (en précisant les limites aux bornes) de la fonction $f:]0, +\infty[\to \mathbb{R}, x \mapsto \frac{\ln(x)}{x}]$.
- 2. Pour tout entier $n \ge 3$, on considère l'équation $e^x x^n = 0$. En exploitant la fonction f, montrer que l'équation ci-dessus admet deux solutions dans $]0, +\infty[$; on les note u_n et v_n avec $0 \le u_n \le v_n$.
- **3.** *a.* Montrer que : $\forall n \ge 3$, $n < v_n < n^2$.
 - **b.** Quelle est la limite de la suite $(v_n)_{n \ge 3}$?
 - c. Montrer que : $\forall n \ge 3$, $v_n = n \ln(n) + n \ln(\ln(v_n))$.
 - **d.** En déduire que : $v_n \sim n \ln(n)$.
- **4.** Soit $g:]-\infty, \frac{1}{e}[\rightarrow]0, e[$ la fonction réciproque de la restriction de la fonction f à l'intervalle]0, e[.
 - a. Exprimer u_n à l'aide de g et en déduire la limite, notée α , de la suite $(u_n)_{n \ge 3}$.
 - **b.** Calculer g'(0).
 - c. En déduire que l'on a :

$$u_n = \alpha + \frac{1}{n} + o\left(\frac{1}{n}\right).$$

CORRECTION -

1. Les fonctions ln et $x \mapsto \frac{1}{x}$ sont dérivables sur $]0,+\infty[$ donc, par produit, f est dérivable sur $]0,+\infty[$. Pour tout x > 0, on a :

$$f'(x) = \frac{\frac{1}{x}x - 1 \times \ln(x)}{x^2} = \frac{1 - \ln(x)}{x^2}$$

d'où le tableau de variations de f:

x	0		e	+∞
f'(x)		+	0	_
f(x)	$-\infty$,	1/e \	0

2. On note que x doit être strictement positif pour être solution de l'équation, qui est donc équivalente à $x = \ln(x^n) = n \ln x$, ou encore à :

$$\frac{\ln x}{x} = \frac{1}{n} \text{ i.e. } f(x) = \frac{1}{n}.$$

• La fonction f est continue et strictement croissante sur l'intervalle]0,e] donc f réalise une bijection de]0,e] sur $f(]0,e]) =]-\infty,1/e]$.

Puisque $n \ge 3$, on a $\frac{1}{n} \le \frac{1}{e}$ donc il existe un unique réel, noté u_n , dans]0,e], qui soit solution de l'équation $f(x) = \frac{1}{n}$.

• La fonction f est continue et strictement décroissante sur l'intervalle $[e, +\infty[$ donc f réalise une bijection de $[0, +\infty[$ sur $f([e, +\infty[) =]0, 1/e].$

Puisque $n \ge 3$, on a $0 < \frac{1}{n} \le \frac{1}{e}$ donc il existe un unique réel, noté v_n , dans $[e, +\infty[$, qui soit solution de l'équation $f(x) = \frac{1}{n}$.

3. *a*. Soit $n \ge 3$.

On a $n \in]e, +\infty[$ et ln(n) > 1 donc $f(n) > \frac{1}{n} = f(v_n)$.

La décroissance de f sur $[e, +\infty[$ montre donc que $n < v_n$.

D'autre part, on a :

$$f(n^2) = \frac{\ln(n^2)}{n^2} = \frac{2\ln(n)}{n^2}$$
 i.e. $f(n^2) = \frac{1}{n} \frac{2\ln(n)}{n} < \frac{1}{n}$

donc $v_n < n^2$.

On a donc, pour tout entier $n \ge 3$, $n < v_n < n^2$.

b. Puisque $n \xrightarrow[n \to +\infty]{} +\infty$, il résulte de l'inégalité précédente et du théorème de minoration que :

$$v_n \xrightarrow[n \to +\infty]{} +\infty.$$

c. La relation $f(v_n) = \frac{1}{n}$ se réécrit $n \ln(v_n) = v_n$ d'où $n \ln(n \ln(v_n)) = v_n$ puis :

$$v_n = n \Big(\ln(n) + \ln(\ln(v_n)) \Big)$$
 i.e. $v_n = n \ln(n) + n \ln(\ln(v_n))$.

d. Comme $v_n < n^2$, on a avec la question précédente :

$$0 < \frac{v_n}{n \ln(n)} \le 1 + \frac{n \ln(\ln(n^2))}{n \ln(n)}$$
$$\le 1 + \frac{\ln(2 \ln(n))}{\ln(n)}$$
$$\le 1 + \frac{\ln(2) + \ln(\ln(n))}{\ln(n)}$$

or, par croissances comparées et par composition de limites, on a :

$$\frac{\ln(\ln(n))}{\ln(n)} \xrightarrow[n \to +\infty]{} 0$$

donc, par théorème d'encadrement :

$$\frac{v_n}{n\ln(n)} \xrightarrow[n \to +\infty]{} 0$$

donc:

$$v_n \sim n \ln n$$
.

4. *a.* On a $0 < u_n < e$ et $f(u_n) = \frac{1}{n}$ donc : $u_n = g(\frac{1}{n})$.

Par continuité de g, on a : $g(\frac{1}{n}) \xrightarrow[n \to +\infty]{} g(0)$.

Par ailleurs, f(1) = 0 donc g(0) = 1 donc : $u_n \xrightarrow[n \to +\infty]{} 1$.

b. On a $g'(0) = \frac{1}{f'(g(0))}$. On en déduit :

$$f'(g(0)) = \frac{1 - \ln(1)}{1^2} = 1$$
 puis $g'(0) = 1$.

c. Puisque *g* est la réciproque d'une fonction dérivable, c'est aussi son cas et l'on peut écrire un développement limité à l'ordre 1 :

$$g(x) = g(0) + xg'(0) + o(x)$$
 i.e. $g(x) = 1 + x + o(x)$

or $\frac{1}{n}$ tend vers 0 donc:

$$u_n = 1 + \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Problème (d'après EM Lyon 2013)

Dans tout le problème, n est un entier tel que $n \ge 2$.

On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées réelles d'ordre n et $\mathcal{M}_{n,1}(\mathbb{R})$ l'ensemble des matrices réelles à une colonne et n lignes, nommées « matrices colonnes » dans la suite du problème.

Si $A \in \mathcal{M}_n(\mathbb{R})$, alors ^t A désigne la matrice transposée de A.

Si $V \in \mathcal{M}_{n,1}(\mathbb{R})$, alors ^tV désigne la matrice transposée de V.

Si $A \in \mathcal{M}_n(\mathbb{R})$ et si $(i, j) \in [1, n]^2$, alors le coefficient de la ligne numéro i et de la colonne numéro j

de A est notée $a_{i,j}$, la matrice A est notée $A = (a_{i,j})_{1 \le i,j \le n}$.

Si V =
$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$$
, alors la matrice colonne V est notée V = $(v_i)_{1 \le i \le n}$.

Si $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$, alors pour tout $j \in [[1,n]]$, on note $C_j(A)$ la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$

constituée des coefficients de la colonne numéro j de A. Ainsi : $C_i(A) = (a_{i,j})_{1 \le i \le n}$.

Partie I : Un exemple

Soit
$$U_0 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $V_0 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ -1 \end{pmatrix}$ et $A_0 = U_0^t V_0$.

- 1. a. Vérifier que 0 est valeur propre de A₀ et déterminer une base du sous-espace propre associé.
 - **b.** On suppose les instructions suivantes exécutées en Python :

```
>>> import numpy as np
>>> import numpy.linalg as al
>>> U = np.array([[1, 2, 3, 4]]).T
>>> V = np.array([[1, -1, 2, -1]]).T
```

Proposer des instructions en Python pour définir la matrice A puis vérifier que 0 est une valeur propre de A.

- 2. a. Calculer A_0U_0 .
 - **b.** Montrer que A_0 est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.
 - de $\mathcal{M}_4(\mathbb{R})$ telles que $A_0 = PDP^{-1}$.

Partie II: Trace d'une matrice carrée

- 3. Montrer que l'application trace $\operatorname{tr}: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$, $A \mapsto \operatorname{tr}(A)$ est linéaire.
- **4.** Montrer : \forall (A, B) \in $\mathcal{M}_n(\mathbb{R})^2$, tr(AB) = tr(BA).
- 5. Vérifier : $\forall A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(^t A A) = \sum_{i=1}^n \sum_{i=1}^n a_{j,i}^2$.

Partie III : Une caractérisation des matrices de rang 1

- **6.** Soit $U = (u_i)_{1 \le i \le n}$ et $V = (v_i)_{1 \le i \le n}$ deux matrices colonnes non nulles de $\mathcal{M}_{n,1}(\mathbb{R})$.
 - *a.* Justifier que : $U^t V \in \mathcal{M}_n(\mathbb{R})$.

Déterminer les coefficients de U^tV à l'aide des coefficients de U et de V.

- **b.** Exprimer $tr(U^tV)$ à l'aide des coefficients de U et de V.
- c. Quel est le rang de U^tV ?
- 7. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
 - *a.* Montrer qu'il existe $j_0 \in [1,n]$ tel que, pour tout $j \in [1,n]$, il existe $\alpha_i \in \mathbb{R}$ vérifiant:

$$C_j(A) = \alpha_j C_{j_0}(A).$$

- **b.** En déduire qu'il existe deux matrices colonnes non nulles U et V de $\mathcal{M}_{n,1}(\mathbb{R})$ telles que $A = U^t V$.
- **8.** Énoncer une caractérisation des matrices de $\mathcal{M}_n(\mathbb{R})$ de rang 1.

Partie IV: Une caractérisation des matrices de rang 1 diagonalisables

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1. On note U et V deux matrices colonnes non nulles de $\mathcal{M}_{n,1}(\mathbb{R})$

telles que $A = U^t V$ et on note a = tr(A).

- 9. Montrer que 0 est valeur propre de A et déterminer la dimension du sous-espace propre associé.
- **10.** Montrer: ${}^{t}VU = (a)$, puis: $A^{2} = aA$.
- **11.** Montrer que si a = 0, alors A n'est pas diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.
- 12. On suppose $a \neq 0$. Calculer AU. Déduire des questions précédentes que A est diagonalisable.
- c. Déterminer une matrice diagonale D de $\mathcal{M}_4(\mathbb{R})$ et une matrice inversible P 13. Énoncer une condition nécessaire et suffisante pour qu'une matrice de $\mathcal{M}_n(\mathbb{R})$ de rang 1 soit diagonalisable.

Partie V : Autour d'une matrice symétrique

On considère une matrice colonne $V = (v_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que $\sum_{j=1}^n v_j^2 = 1$. On note $S = V^t V$.

- **14.** Montrer que S est une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$ et que $S^2 = S$.
- **15.** Montrer que l'application $\Phi : M \longrightarrow SM$ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ qui vérifie :

$$\forall (M, N) \in \mathcal{M}_n(\mathbb{R})^2$$
, $\operatorname{tr}({}^t\Phi(M)N) = \operatorname{tr}({}^tM\Phi(N))$.

- **16.** Vérifier que $\Phi^2 = \Phi$. Que peut-on dire des valeurs propres de Φ ?
- 17. Montrer que les sous-espaces vectoriels $\ker(\Phi)$ et $\ker(\Phi \mathrm{id}_{\mathcal{M}_n(\mathbb{R})})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.

Partie VI: Une application en probabilités

On considère deux variables aléatoires X et Y définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

On suppose de plus : $X(\Omega) = Y(\Omega) = [1, n]$.

On note, pour tout $(i, j) \in [1, n]^2$, $m_{i,j} = \mathbb{P}((X = i) \cap (Y = j))$, puis :

$$M = (m_{i,j})_{i,j} \in \mathcal{M}_n(\mathbb{R}), \ U_X = (\mathbb{P}(X=i))_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R})$$
et $U_Y = (\mathbb{P}(Y=i))_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R}).$

18. On suppose, dans cette question, que les variables aléatoires X et Y sont indépendantes.

Calculer $U_X^t U_Y$. En déduire que la matrice M est de rang 1.

- **19.** On suppose, dans cette question, que la matrice M est de rang 1.
 - a. Montrer: $C_1(M) + \cdots + C_n(M) = U_X$.
 - **b.** En déduire que, pour tout $j \in [1, n]$, il existe $\beta_i \in \mathbb{R}$ tel que $C_i(M) = \beta_i U_X$.
 - *c*. Montrer : $\forall j \in [[1, n]], \mathbb{P}(Y = j) = \beta_j$.
 - d. En déduire que les variables aléatoires X et Y sont indépendantes.

Correction -

1. a. On a
$$A_0 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 & -1 \\ 2 & -2 & 4 & -2 \\ 3 & -3 & 6 & -3 \\ 4 & -4 & 8 & -4 \end{pmatrix}$$
.

Les deux premières colonnes sont colinéaires donc $rg(A_0) < 4$ donc 0 est valeur propre de A_0 .

En fait les colonnes sont deux à deux colinéaires et la matrice est non nulle donc $rg(A_0) = 1$ donc, d'après le théorème du rang, $E_0 = ker(A_0)$ est de dimension 3.

Puisque (en notant C_i la colonne i) $C_1 + C_2 = 0$, $2C_1 - C_3 = 0$ et $C_1 + C_4 = 0$,

les vecteurs $\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 2\\0\\-1\\0 \end{pmatrix}$ et $\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$ sont dans E_0 or ils sont clairement (pourquoi?)

linéairement indépendants donc ils forment une base de E₀ :

$$\left[\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}\right] \text{ est une base de } E_0.$$

- **2.** *a*. On $A_0U_0 = U_0$.
 - **b.** Puisque $U_0 \neq 0$, il s'agit d'un vecteur propre associé à la valeur propre 1 donc E_1 est de dimension au moins 1 mais on sait déjà que E_0 est de dimension 3 donc :

$$4 \leq dim(E_0) + dim(E_1) \leq dim(E) = 4$$

d'où l'égalité et A_0 est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.

c. Notons
$$P = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$
 alors:

3. Soit A et B dans $\mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$, on a :

$$tr(\lambda A + B) = \sum_{i=1}^{n} (\lambda A + B)[i, i]$$

$$= \sum_{i=1}^{n} (\lambda A[i, i] + B[i, i])$$

$$= \lambda \sum_{i=1}^{n} A[i, i] + \sum_{i=1}^{n} B[i, i]$$

$$= \lambda tr(A) + tr(B).$$

Donc l'application trace est linéaire.

4. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. On a :

$$tr(AB) = \sum_{i=1}^{n} (AB)[i, i]$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A[i, k]B[k, i]$$

$$= \cdots$$

$$= tr(BA)$$

 $donc \mid tr(AB) = tr(BA).$

5. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On a :

$$tr(A^{t}A) = \sum_{i=1}^{n} (A^{t}A)[i,i]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A[i,j](^{t}A)[j,i]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A[i,j]A[i,j]$$

donc
$$\operatorname{tr}(A^t A) = \sum_{i=1}^n \sum_{j=1}^n A[i,j]^2$$
.

6. a. On a $U \in \mathcal{M}_{n,1}(\mathbb{R})$ et ${}^tV \in \mathcal{M}_{1,n}(\mathbb{R})$ donc $U {}^tV \in \mathcal{M}_n(\mathbb{R})$. Soit $(i,j) \in [1,n]^2$, on a :

$$(U^{t}V)[i,j] = \sum_{k=1}^{1} U[i,k](^{t}V)[k,j]$$

= $u_{i}v_{j}$

donc
$$U^t V = (u_i v_j)_{1 \le i,j \le n}$$
.

- **b.** On a tr(U ^tV) = $\sum_{i=1}^{n} (U ^{t}V)[i, i]$ donc $tr(U ^{t}V) = \sum_{i=1}^{n} u_{i}v_{i}$.
- *c*. Soit $j \in [1, n]$, la j-ème colonne de U ^tV est :

$$C_{j} = \begin{pmatrix} u_{1}v_{j} \\ u_{2}v_{j} \\ \vdots \\ u_{n}v_{j} \end{pmatrix} \quad \text{donc} \quad C_{j} = v_{j}U.$$

Considérons deux indices i et j dans [1, n] avec $i \neq j$:

- si $v_j = 0$ alors C_j est nulle donc $C_j = 0 \times C_i$;
- sinon on a $C_i = \frac{v_i}{v_j} C_j$.

Donc les colonnes de U ^tV sont proportionnelles entre elles (et la matrice est non nulle) donc $rg(U^tV) \leq 1$.

Puisque U et V sont non nulles, il existe $i \in [1, n]$ et $j \in [1, n]$ tels que $u_i \neq 0$ et $v_i \neq 0$ donc $(U^t V)[i, j] \neq 0$ et cette matrice est donc non nulle.

Donc
$$\operatorname{rg}(\operatorname{U}^t \operatorname{V}) = 1$$
.

7. a. Puisque rg(A) = 1, A est non nulle donc l'une au moins des colonnes de A est non nulle, notons là $C_{i_0}(A)$ avec $j_0 \in [1, n]$.

effet, si $C_{i_0}(A) = \beta C_i$ alors $\beta \neq 0$ puisque $C_{i_0}(A)$ est non nulle et on peut donc multiplier par $\frac{1}{8}$).

- **b.** En posant $U = C_{i_0}(A)$ et $V = {}^t(\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n)$, on a $A = U^t V$.
- 8. On a montré qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est de rang 1 si et seulement s'il existe U et V non nulles dans $\mathcal{M}_{n,1}(\mathbb{R})$ telles que A = U^tV.
- **9.** Puisque rg(A) = 1, on a rg(A) < n donc 0 est valeur propre de A. Le théorème du rang donne alors $\dim(E_0) = n - 1$.
- **10.** Puisque ${}^tV \in \mathcal{M}_{1,n}(\mathbb{R})$ et $U \in \mathcal{M}_{1,n}(\mathbb{R})$, on a ${}^tVU \in \mathcal{M}_{1,1}(\mathbb{R})$ et :

$$(^{t}VU)[1,1] = \sum_{k=1}^{n} (^{t}V)[1,k]U[k,1]$$

$$= \sum_{k=1}^{n} V[k,1]U[k,1]$$

$$= \sum_{k=1}^{n} u_{k}v_{k}$$

$$= \sum_{k=1}^{n} A[k,k]$$

$$= tr(A),$$

donc
$$VU = (a)$$
.

On a:

$$A^{2} = U \underbrace{tVU}_{=a}^{t} VV$$

$$= aU^{t}V$$

$$= aA.$$

On a donc $A^2 = aA$.

- Alors, pour tout $j \in [1, n]$, la colonne C_j de A peut s'écrire $C_j = \alpha_j C_{j_0}(A)$ (en a11. La question précédente montre que a2 a3 est un polynôme annulateur de A donc les valeurs propres de A sont parmi ses racines *i.e.* $Sp(A) \subset \{0; a\}$. Si a = 0 alors il n'y a pas d'autre valeur propre que 0 mais on a vu que $\dim(E_0) = n - 1 < n \text{ donc } A \text{ n'est pas diagonalisable.}$
 - **12.** On a :

$$AU = U \underbrace{{}^{t}VU}_{=a}$$
 donc $AU = aU$.

Puisque $U \neq 0$, cela signifie que a est valeur propre de A (et que U est un vecteur propre associé).

On a donc dim(E_a) ≥ 1 et dim(E_0) = n-1 donc :

$$\dim(\mathbf{E}_a) + \dim(\mathbf{E}_0) = n$$

donc A est diagonalisable.

13. On a montré que si A est de rang 1 et si tr(A) = 0 alors A n'est pas diagonalisable (Q11).

On a montré que si A est de rang 1 et si $tr(A) \neq 0$ alors A est diagonalisable (Q12).

Donc une matrice de $\mathcal{M}_n(\mathbb{R})$ de rang 1 est diagonalisable si et seulement si sa trace est non nulle.

14. Soit $(i, j) \in [[1, n]]^2$, on a :

$$(V^{t}V)[i,j] = v_{i}v_{j} = v_{j}v_{i} = (V^{t}V)[j,i]$$

donc $S = V^t V$ est symétrique.

De plus, on a:

$$S^2 = (V^t V)(V^t V) = V(^t V V)^t V$$

or ${}^{t}VV = \sum_{k=1}^{n} v_{k}^{2} = 1$ donc on obtient :

$$S^2 = 1 \times V^t V = S.$$

On pourait aussi calculer directement le coefficient (i, j) de S^2 :

$$S^{2}[i,j] = \sum_{k=1}^{n} S[i,k]S[k,j]$$

$$= \sum_{k=1}^{n} v_{i}v_{k}v_{k}v_{j}$$

$$= v_{i}v_{j} \sum_{k=1}^{n} v_{k}^{2}$$

$$= v_{i}v_{j}$$

$$= S[i,j].$$

15. Soit $(M, N) \in \mathcal{M}_n(\mathbb{R})^2$ et $\lambda \in \mathbb{R}$:

$$\begin{split} \Phi(\lambda M + N) &= S(\lambda M + N) \\ &= \lambda(SM) + SN \\ &= \lambda \Phi(M) + \Phi(N) \end{split}$$

et, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on a $SM \in \mathcal{M}_n(\mathbb{R})$.

Donc Φ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

Soit $(M, N) \in \mathcal{M}_n(\mathbb{R})^2$. Alors :

$$tr(^t\Phi(M)N) = tr(^t(SM)N)$$

= $tr(^tM^tSN)$
= $tr(^tMSN)$ car S est symétrique
= $tr(^tM\Phi(N))$.

16. Soit $M \in \mathcal{M}_n(\mathbb{R})$, on a (puisque $S^2 = S$):

$$\Phi^2(M) = S(SM) = SM = \Phi(M).$$

Il s'ensuit que S est une matrice de projection donc ses valeurs propres sont 1 et 0.

17. Puisque $\ker(\Phi)$ et $\ker(\Phi - \mathrm{id}_{\mathcal{M}_n(\mathbb{R})})$ sont des sous-espaces propres de Φ , ils sont en somme directe.

De plus, tout $M \in \mathcal{M}_n(\mathbb{R})$ s'écrit : $M = (M - \Phi(M)) + \Phi(M)$ et la relation $\Phi \circ \Phi = \Phi$ donne :

$$\Phi(M - \Phi(M)) = \Phi(M) - \Phi^{2}(M) = 0_{n}$$
 et $\Phi(\Phi(M)) = \Phi(M)$

donc $M - \Phi(M) \in \ker \Phi$ et $M \in \ker(\Phi - id_{\mathcal{M}_n(\mathbb{R})})$. Donc $\mathcal{M}_n(\mathbb{R}) \subset \ker(\Phi) + \ker(\Phi - id_{\mathcal{M}_n(\mathbb{R})})$.

Donc les sous-espaces vectoriels $\ker(\Phi)$ et $\ker(\Phi-\mathrm{id}_{\mathcal{M}_n(\mathbb{R})})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.

18. Pour tout $(i, j) \in [1, n]^2$, on a en exploitant l'indépendance de X et Y :

$$U_X^t U_Y[i,j] = \mathbb{P}(X=i)\mathbb{P}(Y=j) = \mathbb{P}((X=i) \cap (Y=j)) = M[i,j].$$

Donc $M = U_X^t U_Y$ et, d'après **Q8** M est de rang 1.

19. *a.* Soit $i \in [1, n]$, on a :

$$(C_1(M) + \dots + C_n(M))[i] = \sum_{j=1}^n C_j(M)[i]$$

= $\sum_{j=1}^n \mathbb{P}((X = i) \cap (Y = j))$

et la formule des probabilités totales appliquée avec le système complet d'événements formé par les (Y = j) donne :

$$(C_1(M) + \cdots + C_n(M))[i] = \mathbb{P}(X = i) = U_X[i]$$

donc $C_1(M) + \cdots + C_n(M) = U_X$.

b. Puisque M est de rang 1, le s.e.v. F de $\mathcal{M}_{n,1}(\mathbb{R})$ engendré par les $C_j(M)$ est de dimension 1.

D'après la question précédente, U_X est également dans ce s.e.v. F.

Puisque U_X est non nul (la somme de ses composantes est égale à 1), U_X est une base de F.

Donc tous les vecteurs de F s'écrivent sont colinéaires à U_X .

En particulier, pour tout $j \in [1, n]$, il existe $\beta_j \in \mathbb{R}$ tel que $C_j(M) = \beta_j U_X$.

c. Soit $j \in [1, n]$. Tout d'abord la somme des composantes de $C_j(M)$ est, d'après la formule des probabilités totales appliquée avec le système complet d'événements formé par les (X = i):

$$\sum_{i=1}^{n} \mathbb{P}((X=i) \cap (Y=j)) = \mathbb{P}(Y=j).$$

D'autre part, la somme des composantes de U_X est :

$$\sum_{i=1}^{n} \beta_j \mathbb{P}(X=j) = \beta_j \sum_{i=1}^{n} \mathbb{P}(X=j) = \beta_j.$$

Donc: $\forall j \in \llbracket 1, n \rrbracket$, $\mathbb{P}(Y = j) = \beta_j$.

d. Les deux questions précédentes montrent que, pour tout $j \in [1, n]$, on a :

$$C_i(M) = \mathbb{P}(Y = j)U_X$$
,

d'où, pour tout $i \in [1, n]$:

$$\mathbb{P}((X=i)\cap (Y=j))=C_j(M)[i]=\mathbb{P}(Y=j)\mathbb{U}_X[i]=\mathbb{P}(Y=j)\mathbb{P}(X=i).$$

Donc les variables aléatoires X et Y sont indépendantes.