Les questions 1 et 4 ont été vues en cours.

2 ► Étudier la nature de l'intégrale généralisée $I = \int_0^{+\infty} \frac{\sin(t) e^{-t}}{t} dt$.

► La fonction $t \mapsto \frac{\sin(t) e^{-t}}{t}$ est continue sur]0, +∞[. Il y a donc deux problèmes de convergence en 0 et en

$$On a: \frac{\sin(t) e^{-t}}{t} = \frac{\sin(t)}{t} e^{-t} \xrightarrow[t \to 0]{} 1.$$

Donc la fonction intégrée est prolongeable par continuité en 0 et il s'agit d'une fausse singularité.

Donc
$$\int_0^1 \frac{\sin(t) e^{-t}}{t} dt$$
 converge.

▶ Pour tout $t \ge 1$, on a:

$$0 \le \left| \frac{\sin(t) e^{-t}}{t} \right| \le e^{-t}$$

or
$$\int_0^{+\infty} e^{-t} dt$$
 converge donc $\int_1^{+\infty} e^{-t} dt$ également.

D'après le critère de comparaison pour les intégrales de fonctions positives, $\int_{1}^{+\infty} \frac{\sin(t) e^{-t}}{t} dt$ converge.

▶ Donc l'intégrale
$$\int_0^{+\infty} \frac{\sin(t) e^{-t}}{t} dt$$
 converge.

3 ► Étudier la nature de la série de terme général $u_n = \sqrt{n} \ln \left(1 + \frac{1}{n^2} \right)$ (pour $n \ge 1$).

▶ Pour tout
$$n \ge 1$$
, on a: $1 + \frac{1}{n^2} \ge 1$ donc $u_n = \sqrt{n} \ln \left(1 + \frac{1}{n^2} \right) \ge 0$.

$$u_n \sim \sqrt{n} \frac{1}{n^2}$$
 i.e. $u_n \sim \frac{1}{n^{3/2}}$.

- ► Enfin, $\frac{3}{2} > 1$ donc la série de terme général $\frac{1}{n^{3/2}}$ converge.
- ightharpoonup D'après le critère d'équivalence pour les séries à termes positifs, la série de terme général u_n converge.