Notions abordées et objectifs

- ▶ Variables aléatoires à densité.
 - o Définition, fonction de répartition.
 - o Notion de densité de probabilité.
- ▶ Moments d'une variable à densité.
 - o Espérance, propriétés, théorème de transfert.
 - o Moments, variance.
- ▶ Lois usuelles.
 - \circ Loi uniforme, loi exponentielle, loi normale, loi γ .

▶ Note aux colleurs :

• La notion de couple de variables aléatoires n'a pas été revue ; les *n*-uplets de variables aléatoires seront vus plus tard.

▶ Les exercices suivants sont à savoir refaire sans hésitation :

- **1.** Montrer que $f: \mathbb{R} \to \mathbb{R}$, $t \mapsto e^{-t-e^{-t}}$ est une densité de probabilité.
- 2. Soit $\lambda \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$, $t \mapsto \lambda e^{-|t|}$.
 - . Déterminer λ afin que f soit une densité de probabilité.
 - . Soit X une variable aléatoire de densité f. Déterminer la fonction de répartition de X.

3. Soit a > 0 et X une variable aléatoire de densité f donnée par :

$$f(t) = \frac{1}{\alpha} t^{-\frac{1+\alpha}{\alpha}} \, \mathbb{1}_{[1,+\infty[}(t).$$

- . Vérifier que f est bien une densité de probabilité.
- . Pour quelles valeurs de $\alpha,\,X$ admet-elle une espérance? La calculer quand elle existe.
- **4.** Soit X de loi $\mathcal{N}(0,1)$.
 - a. Montrer que X² est une variable à densité et donner une densité.
 - **b.** Est-ce que X + |X| est une variable à densité?
- 5. Soit $\mu > 0$ et X une variable aléatoire de loi exponentielle de paramètre μ . Montrer que pour tous réels positifs x et y:

$$\mathbb{P}_{(X>x)}(X>x+y)=\mathbb{P}(X>y).$$

- 6. Soit X_1 et X_2 deux variables aléatoires indépendantes suivant respectivement les lois exponentielles de paramètres μ_1 et μ_2 .
 - On pose $Y = max(X_1, X_2)$. Déterminer la fonction de répartition F_Y de Y et en déduire une densité de la variable Y.
- 7. Soit X_1 et X_2 deux variables aléatoires indépendantes suivant respectivement les lois exponentielles de paramètres μ_1 et μ_2 .
 - On pose $Z = \min(X_1, X_2)$. Déterminer la fonction de répartition F_Z de Z et en déduire la loi de Z.