TD 7 - Probabilités discrètes

Exercice 7-7 (Espérance et antirépartition)

Soit X une variable aléatoire à valeurs dans \mathbb{N} admettant une espérance.

1. Pour tout entier k, donner une relation liant $\mathbb{P}(X = k)$, $\mathbb{P}(X > k)$ et $\mathbb{P}(X > k - 1)$.

En déduire que pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^n k \mathbb{P}(X=k) = \sum_{k=0}^{n-1} \mathbb{P}(X>k) - n \mathbb{P}(X>n)$.

- 2. Montrer que pour tout $n \ge 1$, $n\mathbb{P}(X > n) \le \sum_{k=n+1}^{+\infty} k\mathbb{P}(X = k)$.
- 3. En déduire que $\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$.
- **1.** Soit $k \in \mathbb{N}$. On a : $(X > k 1) = (X > k) \oplus (X = k)$.

Par σ-additivité, on en déduit : $\mathbb{P}(X > k - 1) = \mathbb{P}(X > k) + \mathbb{P}(X = k)$. Soit $n \in \mathbb{N}^*$, on a :

$$\begin{split} \sum_{k=0}^{n} k \mathbb{P}(\mathbf{X} = k) &= \sum_{k=0}^{n} k \Big(\mathbb{P}(\mathbf{X} > k - 1) - \mathbb{P}(\mathbf{X} > k) \Big) \\ &= \sum_{k=0}^{n} k \mathbb{P}(\mathbf{X} > k - 1) - \sum_{k=0}^{n} k \mathbb{P}(\mathbf{X} > k) \\ &= \sum_{k=1}^{n} k \mathbb{P}(\mathbf{X} > k - 1) - \sum_{k=0}^{n} k \mathbb{P}(\mathbf{X} > k) \\ &= \sum_{k=0}^{n-1} (k + 1) \mathbb{P}(\mathbf{X} > k) - \sum_{k=0}^{n} k \mathbb{P}(\mathbf{X} > k) \\ &= \sum_{k=0}^{n-1} ((k + 1) - k) \mathbb{P}(\mathbf{X} > k) - n \mathbb{P}(\mathbf{X} > n) \end{split}$$

donc: $\sum_{k=0}^{n} k \mathbb{P}(X=k) = \sum_{k=0}^{n-1} \mathbb{P}(X>k) - n \mathbb{P}(X>n).$

2. Soit $n \in \mathbb{N}^*$, on a :

$$(X > n) = \bigcup_{k=n+1}^{+\infty} (X = k)$$

donc, par σ-additivité:

$$\mathbb{P}(X > n) = \sum_{k=n+1}^{+\infty} \mathbb{P}(X = k)$$

puis:

$$n\mathbb{P}(X > n) = \sum_{k=n+1}^{+\infty} n\mathbb{P}(X = k).$$

Pour tout $k \ge n+1$, on a $n\mathbb{P}(X = k) \le k\mathbb{P}(X = k)$, d'où :

$$n\mathbb{P}(X > n) \leqslant \sum_{k=n+1}^{+\infty} k\mathbb{P}(X = k).$$

3. On a pour tout $n \in \mathbb{N}^*$:

$$0 \le n \mathbb{P}(X > n) \le \sum_{k=n+1}^{+\infty} k \mathbb{P}(X = k).$$

On suppose que X admet une espérance donc la série $\sum k \mathbb{P}(X=k)$ converge donc le reste tend vers 0 :

$$\sum_{k=n+1}^{+\infty} k \mathbb{P}(X=k) \xrightarrow[n \to +\infty]{} 0.$$

On déduit alors du théorème d'encadrement :

$$n\mathbb{P}(X > n) \xrightarrow[n \to +\infty]{} 0.$$

Il résulte alors de la première question :

$$\sum_{k=0}^{n-1} \mathbb{P}(X > k) \xrightarrow[n \to +\infty]{} \mathbb{E}(X) \ i.e. \ \boxed{\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k).}$$

ECG2 Fermat 2025-2026 Sébastien PELLERIN