Exercice 10-1

Montrer que pour tous réels $x_1, x_2, ..., x_n$, on a : $\sum_{i=1}^n x_i \le \sqrt{n} \sqrt{\sum_{i=1}^n x_i^2}$. Préciser le cas d'égalité.

Exercice 10-2

1. À l'aide de l'inégalité de Cauchy-Schwarz, montrer que :

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \operatorname{Tr}(A^2) \leq \operatorname{Tr}({}^t A A).$$

2. Montrer que l'on a $Tr(A^2) = Tr(^tAA)$ si et seulement si A est une matrice symétrique.

Exercice 10-3

Soit **u** et **v** deux vecteurs non nuls d'un espace euclidien E. Établir l'équivalence entre les assertions :

- i. les vecteurs u et v sont orthogonaux;
- *ii.* pour tout $\lambda \in \mathbb{R}$, on a $||\lambda \mathbf{u} + \mathbf{v}|| \ge ||\mathbf{v}||$.

Exercice 10-4

Soit $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ la base canonique de \mathbb{R}^n muni du produit scalaire canonique et $\mathbf{A} = (a_{ij})_{1 \leq i,j \leq n}$ une matrice orthogonale. On désigne par \mathbf{c}_j le vecteur de \mathbb{R}^n dont la matrice colonne dans la base canonique est la j-ème colonne de \mathbf{A} .

- 1. Montrer que : $\left| \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \right| \leq \left\| \sum_{i=1}^{n} \mathbf{e}_{i} \right\| \cdot \left\| \sum_{j=1}^{n} \mathbf{c}_{j} \right\|.$
- 2. On note X la matrice colonne constituée de 1, calculer $^{t}(AX)(AX)$.
- 3. En déduire l'inégalité : $\left| \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \right| \le n$.

Exercice 10-5 (inégalité de Bessel)

Soit $\mathcal{F} = (\mathbf{e}_1, \dots, \mathbf{e}_p)$ une famille orthonormée d'un espace euclidien $(E, \langle \cdot, \cdot \rangle)$. Montrer que :

$$\forall \mathbf{u} \in \mathbf{E}, \ \sum_{i=1}^{p} \langle \mathbf{u}, \mathbf{e}_i \rangle^2 \leq \|\mathbf{u}\|^2.$$

Exercice 10-6

Soit $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ une famille de vecteurs d'un espace euclidien telle que :

$$\forall (\varepsilon_1,\ldots,\varepsilon_n) \in \{-1,1\}^n, \quad \left\| \sum_{i=1}^n \varepsilon_i \mathbf{u}_i \right\|^2 = \sum_{i=1}^n \|\mathbf{u}_i\|^2.$$

Montrer que la famille est orthogonale.

Exercice 10-7 (polynômes de Tchebychev)

On définit une suite de polynômes $(T_n)_{n\in\mathbb{N}}$, par la récurrence :

$$T_0 = 1$$
, $T_1(x) = x$ et $\forall n \in \mathbb{N}$, $T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x)$.

1. *a.* Soit $n \in \mathbb{N}$, justifier que pour tout $\theta \in \mathbb{R}$:

$$\cos((n+2)\theta) + \cos(n\theta) = 2\cos((n+1)\theta)\cos(\theta).$$

b. Montrer que pour tout réel θ et tout entier naturel n:

$$cos(n\theta) = T_n(cos(\theta)).$$

- c. Vérifier que T_n est l'unique polynôme vérifiant la relation précédente. Préciser le degré de T_n .
- 2. Soit $n \in \mathbb{N}^*$. Soit $\langle \cdot, \cdot \rangle$ l'application définie sur $\mathbb{R}_n[x]^2$ par :

$$\langle P, Q \rangle = \int_{-1}^{1} \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt.$$

- *a.* Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_n[x]$.
- **b.** Vérifier que la famille $(T_k)_{0 \le k \le n}$ est une base orthogonale pour ce produit scalaire.
- *c*. Déterminer $||T_k||$ pour tout entier $k \in [0, n]$.

ECG2 Fermat 2025-2026 Sébastien PELLERIN