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2 Chapitre X - Compléments d’algébre bilinéaire

Dans tout le chapitre, on considére un espace euclidien E de dimension n dont on note (:,-) le produit
scalaire et ||| la norme.

Dans M,, 1 (R), on considére le produit scalaire canonique donné par (X, Y) = 'XY et on note encore
||| la norme associée.

A - Matrices et endomorphismes symétriques

A.1 - Définitions et exemples

Tout d’abord, on rappelle qu'une matrice A de M, (R) est dite symétrique lorsque ‘A = A ce qui
revient a la condition :
V(i,j) € [Lnl? Alij] = Alj,i.

On rappelle également que I'ensemble des matrices symétrique de M, (RR) est un sous-espace vectoriel
de M, (R) de dimension w et dont une base est constituée par les matrices :

E;;avecie[[1,n] et E;;+E;;avec(i,j)e [1,n]? eti<]j.

Définition X-1
On dit qu’un endomorphisme ¢ € L(E) est un endomorphisme symétrique de E lorsque :

¥(u,v) € B, (¢p(u),v) = (u,@(v)).

Exemples
1> Soit @ : R? — R?,(x,9) > (2x — 6y, —6x — 7).

1l s’agit d’un endomorphisme de R? et, pour tous (x,) et (x’,y’) de R?,on a :

(p(x,9),(x,9)) = ((2x - 6y,~6x = 79),(x,y"))
(2x - 6y)x" + (—6x—7y)y’

x(2x" - 6y")+y(-6x"—7y")
(x,9),0(x",9).

Donc ¢ est un endomorphisme symétrique de R?.

2> On suppose que E est de dimension n > 2 et que u est un vecteur non nul de E. Pour tout réel a > 0, on
note :
@,:E—>E, u>u+au,ug)ug.

Il s’agit d’'un endomorphisme de E. De plus, pour tous vecteurs u et vde E :
(@a(u),v) = (u+a(u,ug)uy,v)
={(u,v)+a{u,ug)(uy,v)
=(uw,v)+a(v,ug){u,ug)
=(u,v+a(v,ug)ug)
= (W, @u(v))

donc ¢, est un endomorphisme symétrique de E.
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A - Matrices et endomorphismes symétriques 3

3> Soit F un sous-espace strict de E et p la projection sur F parallélement a F+.

Il s’agit d’un endomorphisme de E. De plus, pour tous vecteurs u et v de E, on écrit :
U=Uup+upL etv=vp+vVpL
avec up € F, vp € F, up. € FL et vp. € F+. Alors :

(p(u),v) =(p(ug +ug.),v)
=(ug,v)
= (up, Vg + VpL)
= (up, Vg) +(ug, Ves )
= (up, vp)
= (up, vg) +(upL, vg)
= (ug +Ups, V)
={(u,p(Vg +VgL))

=(u,p(v))

donc p est un endomorphisme symétrique de E.

Remarque

Soit (eq,...,e,,) une famille génératrice de E. Un endomorphisme ¢ de E est symétrique si et seulement
si:

V(i,j) € [Lm]? (¢le;)e;) = (e, p(e))).
Il est clair que si ¢ est symétrique alors on a la relation ci-dessus. Réciproquement, on suppose cette
relation vraie et ’'on considére deux vecteurs u et v de E que 'on écrit :

m m
u= Z}\iei et v= Zptjej
i=1 =1

ou les A;, pj sont des réels. Alors :

(p(u),v) = <<P( i}‘iei): iweﬂ
= <Zw Zu] ¢
ii}\z (plei).ej)

donc ¢ est bien symétrique.
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4 Chapitre X - Compléments d’algébre bilinéaire

Exercice C-126 \

Soit f et g deux endomorphismes symétriques de E.

1. Montrer que si f et g commutent alors f o g est symétrique.
2. On souhaite prouver la réciproque. On suppose donc f o g symétrique.

a. Simplifier, pour tousu et vde E, (u, f o g(v) —go f(v)).

b. En déduire que f et ¢ commutent.

A.2 - Caractérisation matricielle

Proposition X-2

Soit ¢ € L(E). Il y a équivalence entre les assertions suivantes :

i. ¢ est un endomorphisme symétrique de E;
ii. il existe une base orthonormée % de E telle que la matrice Matg(¢) soit une matrice
symétrique;
iii. pour toute base orthonormée % de E, la matrice Mat g(¢) est une matrice symétrique.

Démonstration
Tout d’abord considérons une base orthonormée % = (e, e,,...,e,) alors, pour tout j € [1,n] :

o(e) =) _ten(ej)e;
i=1

donc :
(e, pler)) (e, p(ez)) - (ep,@(e,))
(e, p(er)) (ex@(er)) -+ (exq(e,))
Matg(¢) = . . . :
(e, @(er)) (e, @ler)) -+ (e, le,))

La remarque de la page précédente assure que ¢ est symétrique si et seulement si, pour tout (i, j) € [1,n]?,
(ei,(p(ej)) = (ej, ¢ (e;)) ce qui correspond a I’égalité des coefficients aux emplacements (i, j) et (j, ) dans la
matrice précédente donc a la symétrie de cette matrice.

Les équivalences annoncées en découlent.

Exemples
1> Considérons a nouveau 'exemple de ¢ : R? > R?, (x,v) = (2x - 6y,—6x—7Y)..

La matrice de ¢ dans la base canonique de R? est : (—26 :?)
2> Soit F un sous-espace strict de E et p la projection sur F parallélement a Ft.

On considére une base % orthonormée, adaptée a la décomposition E = F®F+, alors la matrice de p
dans cette base est E; ; + E; , + -+ E, , ou r est la dimension de F.

Remarque

Notons que si A et B sont deux matrices représentant un méme endomorphisme dans des bases
orthonormées différentes alors on a une relation de la forme A = 'PBP ou P est la matrice de passage
d’une base a 'autre (donc orthogonale).
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A - Matrices et endomorphismes symétriques 5

Il s’ensuit que A est symétrique si et seulement si B est symétrique ce qui justifie autrement le fait que
ii implique iii.

A.3 - Sous-espaces propres d’'un endomorphisme symétrique

Proposition X-3

Soit ¢ un endomorphisme symétrique de E et F un sous-espace vectoriel de E.

Si F est stable par ¢ alors F* est également stable par ¢.

Démonstration
Soit u € F+, montrons que ¢(u) € FL.
Soit v e F alors :
(p(u),v) =(u, ¢(v)).
Puisque v € F et puisque F est stable par ¢, on a ¢(v) € F or u € F* donc :
(w,9(v)) =0 puis (¢(u),v)=0.
On en déduit que @(u) € F+.

Remarque

En particulier, ker(¢)* et Im(¢p)* sont stables par .

Proposition X-4

Soit ¢ un endomorphisme symétrique de E.

Si u et v sont deux vecteurs propres de @ associés a des valeurs propres distinctes, alors les
vecteurs u et v sont orthogonaux.

Démonstration

Soit u et v deux vecteurs propres de @ associés a des valeurs propres A et p distinctes. On a :

(p(u),v) =(u,¢(v))
donc :
(A, v) = (u, pv)
c’est-a-dire :
AMu,v) = w(w, v).

Puisque A # p, on a donc (u,v) = 0.

Remarque

Plus généralement, si uy,...,u, sont des vecteurs propres de ¢ associés a des valeurs propres deux a
deux distinctes, alors la famille (ul,...,up) est orthogonale.
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6 Chapitre X - Compléments d’algébre bilinéaire

Corollaire X-5

Soit ¢ un endomorphisme symétrique de E.

Les sous-espaces propres de ¢ sont deux a deux orthogonaux.

Exemple

Considérons ’espace M,,(R) muni du produit scalaire défini par (A, B) = tr(* AB). L'application suivante est
alors un endomorphisme symétrique :

@ : M,(R) - M,(R),M - 'M.

Ily a deux valeurs propres : —1 et 1. De plus E; est le sous-espace des matrices symétriques et E_; est celui
des matrices antisymétriques. Ces deux sous-espaces sont orthogonaux.

B - Réduction

B.1 - Le théoreme spectral

Théoreme X-6

Soit ¢ un endomorphisme symétrique de E.

Alors ¢ est diagonalisable et il existe une base orthonormée de E formée de vecteurs propres de .

Démonstration

On prouvera dans le prochain chapitre (sur les fonctions de plusieurs variables) que tout endomorphisme
symétrique d’un espace euclidien admet au moins une valeur propre réelle.

On démontre par récurrence sur l'entier k la propriété :

P(k): «tout endomorphisme symétrique d’un espace euclidien de dimension k est diagonalisable dans
une base orthonormée. »

> En dimension 1, tout endomorphisme est de la forme Aidg donc 9P(1) est vraie.

> Soit k > 1. On suppose que, pour tout j € [1,k], ZP(j) est vraie.

Soit ¢ un endomorphisme symétrique d’un espace euclidien de dimension k + 1 et A une valeur propre de
¢, on note E, (¢) le sous-espace propre associé.

Si E)(¢) = E alors ¢ = Aidg donc ¢ est diagonalisable dans une b.o.n de E.
Sinon, E, (@) # E et Ey(¢) est stable par ¢ donc Ey(¢@)* est également stable par .

Notons 1 la restriction de ¢ a Ey(¢)* (qui n’est pas réduit a {0g}). On a:

¥(u,v) € (Ex(@)")% (P(w),v) = (p(u), v) = (u, ¢(v)) = (u, h(v))

donc P est un endomorphisme symétrique de 1’espace euclidien Ey(¢)* (espace euclidien pour la restric-
tion du produit scalaire).
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7

B - Réduction

Puisque dim E, (¢)* € [1, k]|, il existe par hypothése de récurrence une base de E,(¢)+ formée de vecteur
propres de { donc de ¢.

En réunissant une base de E, () avec cette base, on obtient une base de E formée de vecteurs propres de
¢@. Donc P(k + 1) est vraie.

> Par récurrence, la propriété 9(k) est vraie pour tout k > 1.

Exemples
1> Considérons a nouveau ¢ : R? — R?,(x,y) = (2x — 69, —6x — 7).

2> On considere ¢, : E — E, u— u+au,up)uy ol ug est un vecteur non nul de Eet a > 0.

Ona:
pa (up) = ug +a(ug,ughug = (1 +afull*)up

or uy = Og donc ug est vecteur propre pour la valeur propre A =1+ al|ug||* (notons que A > 1 puisque
az0).
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8 Chapitre X - Compléments d’algébre bilinéaire

De plus, pour tout u € Vect (uy)*,on a:

@y(u) =u+a(u,up)uy=u
~——
=0
donc le réel 1 est donc une seconde valeur propre pour ¢,.

Ona:
dimVect(ug) =1 et dimVect(ug)t=n-1

donc :
dim(E;) +dim(Ey) > n

donc il y a égalité des dimensions et @, est bien diagonalisable dans une b.o.n de E.

Pour déterminer une telle base, on peut ajouter le vecteur normée ”zﬁ

B.2 - Version matricielle

Proposition X-7

Si A est une matrice symétrique réelle alors A est diagonalisable.

Plus précisément, il existe une matrice orthogonale P et une matrice diagonale réelle D telles que
D ='PAP.

Démonstration

Soit @ 'endomorphisme de R” canoniquement associé a A. Puisque la base canonique est orthonormée
pour le produit scalaire canonique, @ est un endomorphisme symétrique. D’apres le résultat précédent, ¢
est diagonalisable dans une b.o.n. et on peut considérer la matrice de passage P de la base canonique de
R" a cette base. Alors P est une matrice orthogonale et "PAP est bien diagonale.
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C - Projection orthogonale 9

C - Projection orthogonale

C.1 - Deéfinition et caractérisations
Définition X-8
Soit E un espace euclidien et F un sous-espace de E.

On appelle projection orthogonale p de E sur F la projection de E sur F parallélement a F+.

Pour tout x de E, le vecteur p(x) est appelé le projeté orthogonal de x sur F.

Remarques

1> Ona:
. y € F
y =pr(x) &= { x—y € F

2> Un projecteur p est orthogonal si et seulement si Im(p) et ker(p) sont supplémentaires orthogonaux
ce qui revient au fait que E((p) et E;(p) soient des supplémentaires orthogonaux de E .

3> Pour tout vecteur x de E, on a : (p(x),x) = ||p(x)||*.
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10 Chapitre X - Compléments d’algébre bilinéaire

Exemple
On considére I'espace M,,(R) muni du produit scalaire donné par (A, B) = tr('AB) et on considére :

1 1
p: M, (R) > M,(R),M p(M) = §M+ EtM'

Montrons que p est une projection orthogonale.

Proposition X-9

Soit p un projecteur d’un espace euclidien E. Il y a équivalence entre :

i. le projecteur p est orthogonal.
ii. ’endomorphisme p est symétrique.

Démonstration

L'implication i= ii. a été vue a I'exemple 3 page 3.

Réciproquement, on suppose que p est symétrique. Soit u € ker(p) et v € Im(p) alors (puisque p est la
projection sur Im(p) parallelement a ker(p)), on a v = p(v) donc (puisque p est supposé symétrique) :

(u,p(v)) = (p(u),v) =(0g,v) = 0.

Le noyau et I'image de p sont des sous-espaces orthogonaux de E donc p est un projecteur orthogonal.
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C - Projection orthogonale 11

Exercice C-127 \

1. Soit E un espace euclidien, % une base orthonormée de E, p un endomorphisme et A la matrice
de p dans la base %. Montrer qu’il y a équivalence entre :

i. 'endomorphisme p est un projecteur orthogonal;
ii. la matrice A est symétrique et A? = A.

2. Soit n € N* et ], la matrice de M,,(R) ne contenant que des %

Montrer que ], est la matrice dans la base canonique d’une projection orthogonale donc on
précisera I'image.

Proposition X-10

Soit F un sous-espace vectoriel d’un espace euclidien E, on note py la projection orthogonale sur
F.Si Br = (ey,...,e,) est une base orthonormée de F, alors pour tout vecteur u de E :

P
pr(w) =) (wepe;
i=1

Démonstration

On peut compléter B en une base orthonormée B = (el,ez,...,ep,ep+1,...,e,,) de E. Soit u € E, alors :

n P n
u=) (weei=) (wedei+ ) (wepe;
i=1 i=1

i=p+1
E/_/%/_/
eF eFL

P
et par définition du projecteur orthogonal sur F : pg(u) = Z(u,ei>ei.
i=1

Exemples
1> Projection sur une droite vectorielle

Considérons une droite vectorielle F = Vect(e) (ou e = 0g) alors (€) = (”Le) est une b.o.n. de F donc

ef|
pour tout vecteur ude E,on a:

o (we)
pr(u) = (u,8)e = l}Z”‘Z

e.
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12 Chapitre X - Compléments d’algébre bilinéaire

2> Projection sur un hyperplan

Soit H un hyperplan de E alors H* est une droite vectorielle donc on peut considérer un vecteur non
nul et unitaire uy de H. En notant g la projection orthogonale sur H+, on a :

YueE, g(u) =(u,up)uy,
d’ou en notant pyy la projection orthogonale sur H :

Yu € E, py(u) = u-{u,up)ug.

3> Dans R3, déterminons le projeté deu =(0,-1,4) sur F= {(x,y,z) eR3;x - 2y+3z= 0}.

o Déterminons tout d’abord une base de F. Soit v =(x,9,z) € R3,o0na:

veF & x-2y+3z=0
— x=2y-3z
— v=(29-329,2)=9.(2,1,0) +2.(-3,0,1)

donc les vecteurs u; =(2,1,0) et uy = (-3,0,1) engendrent F or ces deux vecteurs ne sont pas colinéaires
donc ils forment une famille libre donc ils forment une base de F.

o Puisque pg(u) € F, il existe des réels A et A, tels que :
pr(u) = Apug +A.up = (231 =30, A1, Ap).
Puisque u—pp(u) € F+,on a:
(u-pg(u),u;) =0 et (u-pg(u)uy)=0.
On au-pg(u) =(-2A; +3X,,—-1 —Xy,4-),) donc on obtient :
2(=2XA1 +3X)+ (-1 =A1)=0 et —=3(-2A+3X)+4-X, =0

c’est-a-dire :
{—5)\1 + 6)&2 =1 i {—5)&1 + 6)\2 =1
1.e.

6\ —10A, =4 —-14X, =-14
et (1,1) est 'unique solution de ce systeme.

Donc pg(u) =(-1,1,1).
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C.2 - Applications

C.2.a - Distance a un sous-espace vectoriel

Théoreme et définition X-11

Soit F un sous-espace vectoriel d’un espace euclidien E, on note pg la projection orthogonale sur
E.

Soit u € E. On définit la distance deu a F par :

d(u,F) = min|lu-v]||.
veF

Cette expression est bien définie et vérifie :
d(u,F) = [lu—pg(u)].

De plus, ce minimum n’est atteint que pour v = pg(u).

Démonstration

Remarques

1> Le projeté orthogonal de u a F est I'unique vecteur pg(u) de F vérifiant :
Vv eE, [lu—vl||>u-pp(u)l,

ce qui revient a :
veF

v=ppu) = .
lu —v|| = minycp |ju—w|

2> Puisque les vecteurs pg(u) et u — pg(u) sont orthogonaux, le théoréeme de Pythagore donne :

[ull? = |[u - pg(u) + pr(w)||* = [lu - pp(u)||* + = [|pg(u)|®

donc :
d(u,F)? = |[u-pg(u)|® = [ull> - lps(w)]*.
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14 Chapitre X - Compléments d’algébre bilinéaire

Exercice C-128

Soit uy un vecteur non nul de E et x un vecteur de E.

Exprimer la distance de x aux sous-espaces Vect(ug) et Vect(ug)*.

Exercice C—129‘

1

2

Déterminer inf J (tz—at—b) dt.
(abjeR2 J_;

C.2.b - Probléeme des moindres carrés

Soit f € L(RP,R") et b un vecteur de R".

Si f n’est pas surjective (par exemple si p < n) alors il n’existe pas nécessairement de vecteur x € R” tel
que f(x) =b. On peut donc chercher a obtenir un vecteur x dont I'image soit «proche» (en un sens a
préciser) de b. On munit 'espace d’arrivée R" de sa structure euclidienne canonique, on veut justifier
'existence de :

min||f(x)-b
min||f () b]
et trouver un vecteur réalisant ce minimum. Cela revient a chercher :

min -b|l.
min_ |y bl

D’apres la partie précédente, ce minimum est atteint lorsque y est le projeté orthogonal de b sur le
sous-espace Im(f) de E.

Notons que si f est injective (i.e. rg(f) = p) alors ce vecteur est unique; dans le cas contraire, tout
vecteur de la forme pyp,(r)(b) + 2, avec z € ker(f), convient également.

Proposition X-12 (version matricielle)

Soit n et p deux entiers avec 1 <p<n, A€ M, ,(R) derang p et Be M, 1(R).

Alors il existe un unique X € M, 1 (R) minimisant 'expression [|[AX — B|| sur M,, 1 (R).

Exercice C-130

1 2 0
SoitA=|2 OfletB=[1].
1 1 2

Déterminer I'unique X € M, ; (R) qui minimise [[AX — B]|.
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