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2 Chapitre X - Compléments d’algèbre bilinéaire

Dans tout le chapitre, on considère un espace euclidien E de dimension n dont on note ⟨·, ·⟩ le produit
scalaire et ∥·∥ la norme.

DansMn,1(R), on considère le produit scalaire canonique donné par ⟨X,Y⟩ = tXY et on note encore
∥·∥ la norme associée.

A - Matrices et endomorphismes symétriques

A.1 - Définitions et exemples

Tout d’abord, on rappelle qu’une matrice A de Mn(R) est dite symétrique lorsque tA = A ce qui
revient à la condition :

∀(i, j) ∈ ⟦1,n⟧2, A[i, j] = A[j, i].

On rappelle également que l’ensemble des matrices symétrique deMn(R) est un sous-espace vectoriel
deMn(R) de dimension n(n+1)

2 et dont une base est constituée par les matrices :

Ei,i avec i ∈ ⟦1,n⟧ et Ei,j + Ej,i avec (i, j) ∈ ⟦1,n⟧2 et i < j.

Définition X-1

On dit qu’un endomorphisme ϕ ∈ L(E) est un endomorphisme symétrique de E lorsque :

∀(u,v) ∈ E2, ⟨ϕ(u),v⟩ = ⟨u,ϕ(v)⟩.

1 ▷ Soit ϕ :R2→R2, (x,y) 7→ (2x − 6y,−6x − 7y)..

Il s’agit d’un endomorphisme de R2 et, pour tous (x,y) et (x′ , y′) de R2, on a :

⟨ϕ(x,y), (x′ , y′)⟩ = ⟨(2x − 6y,−6x − 7y), (x′ , y′)⟩
= (2x − 6y)x′ + (−6x − 7y)y′

= x (2x′ − 6y′) + y (−6x′ − 7y′)

= ⟨(x,y),ϕ(x′ , y′)⟩.

Donc ϕ est un endomorphisme symétrique de R2.
2 ▷ On suppose que E est de dimension n ⩾ 2 et que u0 est un vecteur non nul de E. Pour tout réel a ⩾ 0, on

note :
ϕa : E→ E, u 7→ u + a⟨u,u0⟩u0.

Il s’agit d’un endomorphisme de E. De plus, pour tous vecteurs u et v de E :

⟨ϕa(u),v⟩ = ⟨u + a⟨u,u0⟩u0,v⟩
= ⟨u,v⟩+ a⟨u,u0⟩⟨u0,v⟩
= ⟨u,v⟩+ a⟨v,u0⟩⟨u,u0⟩
= ⟨u,v + a⟨v,u0⟩u0⟩
= ⟨u,ϕa(v)⟩

donc ϕa est un endomorphisme symétrique de E.

Exemples
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A - Matrices et endomorphismes symétriques 3

3 ▷ Soit F un sous-espace strict de E et p la projection sur F parallèlement à F⊥.

Il s’agit d’un endomorphisme de E. De plus, pour tous vecteurs u et v de E, on écrit :

u = uF + uF⊥ et v = vF + vF⊥

avec uF ∈ F, vF ∈ F, uF⊥ ∈ F⊥ et vF⊥ ∈ F⊥. Alors :

⟨p(u),v⟩ = ⟨p(uF + uF⊥ ),v⟩
= ⟨uF,v⟩
= ⟨uF,vF + vF⊥⟩
= ⟨uF,vF⟩+ ⟨uF,vF⊥⟩
= ⟨uF,vF⟩
= ⟨uF,vF⟩+ ⟨uF⊥ ,vF⟩
= ⟨uF + uF⊥ ,vF⟩
= ⟨u,p(vF + vF⊥ )⟩
= ⟨u,p(v)⟩

donc p est un endomorphisme symétrique de E.

Remarque

Soit (e1, . . . ,em) une famille génératrice de E. Un endomorphisme ϕ de E est symétrique si et seulement
si :

∀(i, j) ∈ ⟦1,m⟧2, ⟨ϕ(ei),ej⟩ = ⟨ei ,ϕ(ej )⟩.

Il est clair que si ϕ est symétrique alors on a la relation ci-dessus. Réciproquement, on suppose cette
relation vraie et l’on considère deux vecteurs u et v de E que l’on écrit :

u =
m∑
i=1

λiei et v =
m∑
j=1

µjej

où les λi ,µj sont des réels. Alors :

⟨ϕ(u),v⟩ = ⟨ϕ
( m∑
i=1

λiei

)
,

m∑
j=1

µjej⟩

= ⟨
m∑
i=1

λiϕ(ei),
m∑
j=1

µjej⟩

=
m∑
i=1

m∑
j=1

λiµj⟨ϕ(ei),ej⟩

=
m∑
i=1

m∑
j=1

λiµj⟨ei ,ϕ(ej )⟩

= ⟨
m∑
i=1

λiei ,
m∑
j=1

µjϕ(ej )⟩

= ⟨
m∑
i=1

λiei ,ϕ
( m∑
j=1

µjej

)
⟩

= ⟨u,ϕ(v)⟩

donc ϕ est bien symétrique.
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4 Chapitre X - Compléments d’algèbre bilinéaire

Exercice C-126

Soit f et g deux endomorphismes symétriques de E.

1. Montrer que si f et g commutent alors f ◦ g est symétrique.
2. On souhaite prouver la réciproque. On suppose donc f ◦ g symétrique.

a. Simplifier, pour tous u et v de E, ⟨u, f ◦ g(v)− g ◦ f (v)⟩.
b. En déduire que f et g commutent.

A.2 - Caractérisation matricielle

Proposition X-2

Soit ϕ ∈ L(E). Il y a équivalence entre les assertions suivantes :

i. ϕ est un endomorphisme symétrique de E ;
ii. il existe une base orthonormée B de E telle que la matrice MatB (ϕ) soit une matrice

symétrique ;
iii. pour toute base orthonorméeB de E, la matrice MatB (ϕ) est une matrice symétrique.

Démonstration
Tout d’abord considérons une base orthonorméeB = (e1,e2, . . . ,en) alors, pour tout j ∈ ⟦1,n⟧ :

ϕ
(
ej

)
=

n∑
i=1

⟨ei ,ϕ
(
ej

)
⟩ei

donc :

MatB (ϕ) =


⟨e1,ϕ (e1)⟩ ⟨e1,ϕ (e2)⟩ · · · ⟨e1,ϕ (en)⟩
⟨e2,ϕ (e1)⟩ ⟨e2,ϕ (e2)⟩ · · · ⟨e2,ϕ (en)⟩

...
... · · ·

...
⟨en,ϕ (e1)⟩ ⟨en,ϕ (e2)⟩ · · · ⟨en,ϕ (en)⟩

 .
La remarque de la page précédente assure que ϕ est symétrique si et seulement si, pour tout (i, j) ∈ ⟦1,n⟧2,
⟨ei ,ϕ

(
ej

)
⟩ = ⟨ej ,ϕ (ei)⟩ ce qui correspond à l’égalité des coefficients aux emplacements (i, j) et (j, i) dans la

matrice précédente donc à la symétrie de cette matrice.

Les équivalences annoncées en découlent.

1 ▷ Considérons à nouveau l’exemple de ϕ :R2→R2, (x,y) 7→ (2x − 6y,−6x − 7y)..

La matrice de ϕ dans la base canonique de R2 est :
(

2 −6
−6 −7

)
.

2 ▷ Soit F un sous-espace strict de E et p la projection sur F parallèlement à F⊥.

On considère une baseB orthonormée, adaptée à la décomposition E = F⊕ F⊥, alors la matrice de p
dans cette base est E1,1 + E2,2 + · · ·+ Er,r où r est la dimension de F.

Exemples

Remarque

Notons que si A et B sont deux matrices représentant un même endomorphisme dans des bases
orthonormées différentes alors on a une relation de la forme A = tPBP où P est la matrice de passage
d’une base à l’autre (donc orthogonale).
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A - Matrices et endomorphismes symétriques 5

Il s’ensuit que A est symétrique si et seulement si B est symétrique ce qui justifie autrement le fait que
ii implique iii.

A.3 - Sous-espaces propres d’un endomorphisme symétrique

Proposition X-3

Soit ϕ un endomorphisme symétrique de E et F un sous-espace vectoriel de E.

Si F est stable par ϕ alors F⊥ est également stable par ϕ.

Démonstration

Soit u ∈ F⊥, montrons que ϕ(u) ∈ F⊥.

Soit v ∈ F alors :
⟨ϕ(u),v⟩ = ⟨u,ϕ(v)⟩.

Puisque v ∈ F et puisque F est stable par ϕ, on a ϕ(v) ∈ F or u ∈ F⊥ donc :

⟨u,ϕ(v)⟩ = 0 puis ⟨ϕ(u),v⟩ = 0.

On en déduit que ϕ(u) ∈ F⊥.

Remarque

En particulier, ker(ϕ)⊥ et Im(ϕ)⊥ sont stables par ϕ.

Proposition X-4

Soit ϕ un endomorphisme symétrique de E.

Si u et v sont deux vecteurs propres de ϕ associés à des valeurs propres distinctes, alors les
vecteurs u et v sont orthogonaux.

Démonstration

Soit u et v deux vecteurs propres de ϕ associés à des valeurs propres λ et µ distinctes. On a :

⟨ϕ(u),v⟩ = ⟨u,ϕ(v)⟩

donc :
⟨λu,v⟩ = ⟨u,µv⟩

c’est-à-dire :
λ⟨u,v⟩ = µ⟨u,v⟩.

Puisque λ , µ, on a donc ⟨u,v⟩ = 0.

Remarque

Plus généralement, si u1, . . . ,up sont des vecteurs propres de ϕ associés à des valeurs propres deux à
deux distinctes, alors la famille (u1, . . . ,up) est orthogonale.

Sébastien PELLERIN 2025-2026



6 Chapitre X - Compléments d’algèbre bilinéaire

Corollaire X-5

Soit ϕ un endomorphisme symétrique de E.

Les sous-espaces propres de ϕ sont deux à deux orthogonaux.

Considérons l’espaceMn(R) muni du produit scalaire défini par ⟨A,B⟩ = tr(tAB). L’application suivante est
alors un endomorphisme symétrique :

ϕ :Mn(R)→Mn(R),M 7→ tM.

Il y a deux valeurs propres : −1 et 1. De plus E1 est le sous-espace des matrices symétriques et E−1 est celui
des matrices antisymétriques. Ces deux sous-espaces sont orthogonaux.

Exemple

B - Réduction

B.1 - Le théorème spectral

Théorème X-6

Soit ϕ un endomorphisme symétrique de E.

Alors ϕ est diagonalisable et il existe une base orthonormée de E formée de vecteurs propres de ϕ.

Démonstration
On prouvera dans le prochain chapitre (sur les fonctions de plusieurs variables) que tout endomorphisme
symétrique d’un espace euclidien admet au moins une valeur propre réelle.

On démontre par récurrence sur l’entier k la propriété :

P (k) : « tout endomorphisme symétrique d’un espace euclidien de dimension k est diagonalisable dans
une base orthonormée. »

▷ En dimension 1, tout endomorphisme est de la forme λ idE donc P (1) est vraie.

▷ Soit k ⩾ 1. On suppose que, pour tout j ∈ ⟦1, k⟧, P (j) est vraie.

Soit ϕ un endomorphisme symétrique d’un espace euclidien de dimension k + 1 et λ une valeur propre de
ϕ, on note Eλ(ϕ) le sous-espace propre associé.

Si Eλ(ϕ) = E alors ϕ = λ idE donc ϕ est diagonalisable dans une b.o.n de E.

Sinon, Eλ(ϕ) , E et Eλ(ϕ) est stable par ϕ donc Eλ(ϕ)⊥ est également stable par ϕ.

Notons ψ la restriction de ϕ à Eλ(ϕ)⊥ (qui n’est pas réduit à {0E}). On a :

∀(u,v) ∈ (Eλ(ϕ)⊥)2, ⟨ψ(u),v⟩ = ⟨ϕ(u),v⟩ = ⟨u,ϕ(v)⟩ = ⟨u,ψ(v)⟩

donc ψ est un endomorphisme symétrique de l’espace euclidien Eλ(ϕ)⊥ (espace euclidien pour la restric-
tion du produit scalaire).

2025-2026 Sébastien PELLERIN



B - Réduction 7

Puisque dim Eλ(ϕ)⊥ ∈ ⟦1, k⟧, il existe par hypothèse de récurrence une base de Eλ(ϕ)⊥ formée de vecteur
propres de ψ donc de ϕ.

En réunissant une base de Eλ(ϕ) avec cette base, on obtient une base de E formée de vecteurs propres de
ϕ. Donc P (k + 1) est vraie.

▷ Par récurrence, la propriété P (k) est vraie pour tout k ⩾ 1.

1 ▷ Considérons à nouveau ϕ :R2→R2, (x,y) 7→ (2x − 6y,−6x − 7y)..

2 ▷ On considère ϕa : E→ E, u 7→ u + a⟨u,u0⟩u0 où u0 est un vecteur non nul de E et a ⩾ 0.

On a :
ϕa (u0) = u0 + a⟨u0,u0⟩u0 =

(
1 + a∥u0∥2

)
u0

or u0 , 0E donc u0 est vecteur propre pour la valeur propre λ = 1 + a∥u0∥2 (notons que λ > 1 puisque
a ⩾ 0).

Exemples

Sébastien PELLERIN 2025-2026



8 Chapitre X - Compléments d’algèbre bilinéaire

De plus, pour tout u ∈ Vect(u0)⊥, on a :

ϕa(u) = u + a⟨u,u0⟩︸ ︷︷ ︸
=0

u0 = u

donc le réel 1 est donc une seconde valeur propre pour ϕa.

On a :
dimVect(u0) = 1 et dimVect(u0)⊥ = n− 1

donc :
dim(E1) + dim(Eλ) ⩾ n

donc il y a égalité des dimensions et ϕa est bien diagonalisable dans une b.o.n de E.

Pour déterminer une telle base, on peut ajouter le vecteur normée u0
∥u0∥

.

B.2 - Version matricielle

Proposition X-7

Si A est une matrice symétrique réelle alors A est diagonalisable.

Plus précisément, il existe une matrice orthogonale P et une matrice diagonale réelle D telles que
D = tPAP.

Démonstration
Soit ϕ l’endomorphisme de Rn canoniquement associé à A. Puisque la base canonique est orthonormée
pour le produit scalaire canonique, ϕ est un endomorphisme symétrique. D’après le résultat précédent, ϕ
est diagonalisable dans une b.o.n. et on peut considérer la matrice de passage P de la base canonique de
R

n à cette base. Alors P est une matrice orthogonale et tPAP est bien diagonale.

2025-2026 Sébastien PELLERIN



C - Projection orthogonale 9

C - Projection orthogonale

C.1 - Définition et caractérisations

Définition X-8

Soit E un espace euclidien et F un sous-espace de E.

On appelle projection orthogonale p de E sur F la projection de E sur F parallèlement à F⊥.

Pour tout x de E, le vecteur p(x) est appelé le projeté orthogonal de x sur F.

Remarques

1 ▷ On a :

y = pF(x) ⇐⇒
{

y ∈ F
x− y ∈ F⊥.

2 ▷ Un projecteur p est orthogonal si et seulement si Im(p) et ker(p) sont supplémentaires orthogonaux
ce qui revient au fait que E0(p) et E1(p) soient des supplémentaires orthogonaux de E .

3 ▷ Pour tout vecteur x de E, on a : ⟨p(x),x⟩ = ∥p(x)∥2.

Sébastien PELLERIN 2025-2026



10 Chapitre X - Compléments d’algèbre bilinéaire

On considère l’espaceMn(R) muni du produit scalaire donné par ⟨A,B⟩ = tr(tAB) et on considère :

p :Mn(R)→Mn(R),M 7→ p(M) =
1
2

M +
1
2
tM.

Montrons que p est une projection orthogonale.

Exemple

Proposition X-9

Soit p un projecteur d’un espace euclidien E. Il y a équivalence entre :

i. le projecteur p est orthogonal.
ii. l’endomorphisme p est symétrique.

Démonstration
L’implication i⇒ ii. a été vue à l’exemple 3 page 3.

Réciproquement, on suppose que p est symétrique. Soit u ∈ ker(p) et v ∈ Im(p) alors (puisque p est la
projection sur Im(p) parallèlement à ker(p)), on a v = p(v) donc (puisque p est supposé symétrique) :

⟨u,p(v)⟩ = ⟨p(u),v⟩ = ⟨0E,v⟩ = 0.

Le noyau et l’image de p sont des sous-espaces orthogonaux de E donc p est un projecteur orthogonal.

2025-2026 Sébastien PELLERIN



C - Projection orthogonale 11

Exercice C-127

1. Soit E un espace euclidien,B une base orthonormée de E, p un endomorphisme et A la matrice
de p dans la baseB . Montrer qu’il y a équivalence entre :

i. l’endomorphisme p est un projecteur orthogonal ;
ii. la matrice A est symétrique et A2 = A.

2. Soit n ∈N∗ et Jn la matrice deMn(R) ne contenant que des 1
n .

Montrer que Jn est la matrice dans la base canonique d’une projection orthogonale donc on
précisera l’image.

Proposition X-10

Soit F un sous-espace vectoriel d’un espace euclidien E, on note pF la projection orthogonale sur
F. Si BF = (e1, . . . ,ep) est une base orthonormée de F, alors pour tout vecteur u de E :

pF(u) =
p∑

i=1

⟨u,ei⟩ei .

Démonstration

On peut compléter BF en une base orthonormée B =
(
e1,e2, . . . ,ep,ep+1, . . . ,en

)
de E. Soit u ∈ E, alors :

u =
n∑
i=1

⟨u,ei⟩ei =
p∑

i=1

⟨u,ei⟩ei︸       ︷︷       ︸
∈F

+
n∑

i=p+1

⟨u,ei⟩ei︸         ︷︷         ︸
∈F⊥

et par définition du projecteur orthogonal sur F : pF(u) =
p∑

i=1

⟨u,ei⟩ei .

1 ▷ Projection sur une droite vectorielle

Considérons une droite vectorielle F = Vect(e) (où e , 0E) alors (ẽ) =
(

1
∥e∥e

)
est une b.o.n. de F donc

pour tout vecteur u de E, on a :

pF(u) = ⟨u, ẽ⟩ẽ =
⟨u,e⟩
∥e∥2

e.

Exemples

Sébastien PELLERIN 2025-2026



12 Chapitre X - Compléments d’algèbre bilinéaire

2 ▷ Projection sur un hyperplan

Soit H un hyperplan de E alors H⊥ est une droite vectorielle donc on peut considérer un vecteur non
nul et unitaire u0 de H⊥. En notant q la projection orthogonale sur H⊥, on a :

∀u ∈ E, q(u) = ⟨u,u0⟩u0,

d’où en notant pH la projection orthogonale sur H :

∀u ∈ E, pH(u) = u− ⟨u,u0⟩u0.

3 ▷ Dans R3, déterminons le projeté de u = (0,−1,4) sur F =
{
(x,y,z) ∈R3;x − 2y + 3z = 0

}
.

◦ Déterminons tout d’abord une base de F. Soit v = (x,y,z) ∈R3, on a :

v ∈ F ⇐⇒ x − 2y + 3z = 0

⇐⇒ x = 2y − 3z

⇐⇒ v = (2y − 3z,y,z) = y.(2,1,0) + z.(−3,0,1)

donc les vecteurs u1 = (2,1,0) et u2 = (−3,0,1) engendrent F or ces deux vecteurs ne sont pas colinéaires
donc ils forment une famille libre donc ils forment une base de F.

◦ Puisque pF(u) ∈ F, il existe des réels λ1 et λ2 tels que :

pF(u) = λ1.u1 +λ2.u2 = (2λ1 − 3λ2,λ1,λ2).

Puisque u− pF(u) ∈ F⊥, on a :

⟨u− pF(u),u1⟩ = 0 et ⟨u− pF(u),u2⟩ = 0.

On a u− pF(u) = (−2λ1 + 3λ2,−1−λ1,4−λ2) donc on obtient :

2(−2λ1 + 3λ2) + (−1−λ1) = 0 et − 3(−2λ1 + 3λ2) + 4−λ2 = 0

c’est-à-dire : {
−5λ1 + 6λ2 = 1

6λ1 − 10λ2 = −4
i.e.

{
−5λ1 + 6λ2 = 1

− 14λ2 = −14

et (1,1) est l’unique solution de ce système.

Donc pF(u) = (−1,1,1).

2025-2026 Sébastien PELLERIN



C - Projection orthogonale 13

C.2 - Applications

C.2.a - Distance à un sous-espace vectoriel

Théorème et définition X-11

Soit F un sous-espace vectoriel d’un espace euclidien E, on note pF la projection orthogonale sur
F.

Soit u ∈ E. On définit la distance de u à F par :

d(u,F) = min
v∈F
∥u− v∥ .

Cette expression est bien définie et vérifie :

d(u,F) = ∥u− pF(u)∥ .

De plus, ce minimum n’est atteint que pour v = pF(u).

Démonstration

Remarques

1 ▷ Le projeté orthogonal de u à F est l’unique vecteur pF(u) de F vérifiant :

∀v ∈ E, ∥u− v∥ ⩾ ∥u− pF(u)∥ ,

ce qui revient à :

v = pF(u) ⇐⇒

v ∈ F

∥u− v∥ = minw∈F ∥u−w∥
.

2 ▷ Puisque les vecteurs pF(u) et u− pF(u) sont orthogonaux, le théorème de Pythagore donne :

∥u∥2 = ∥u− pF(u) + pF(u)∥2 = ∥u− pF(u)∥2 + = ∥pF(u)∥2

donc :
d(u,F)2 = ∥u− pF(u)∥2 = ∥u∥2 − ∥pF(u)∥2 .

Sébastien PELLERIN 2025-2026



14 Chapitre X - Compléments d’algèbre bilinéaire

Exercice C-128

Soit u0 un vecteur non nul de E et x un vecteur de E.

Exprimer la distance de x aux sous-espaces Vect(u0) et Vect(u0)⊥.

Exercice C-129

Déterminer inf
(a,b)∈R2

∫ 1

−1

(
t2 − at − b

)2
dt.

C.2.b - Problème des moindres carrés

Soit f ∈ L(Rp,Rn) et b un vecteur de Rn.

Si f n’est pas surjective (par exemple si p < n) alors il n’existe pas nécessairement de vecteur x ∈Rp tel
que f (x) = b. On peut donc chercher à obtenir un vecteur x dont l’image soit «proche» (en un sens à
préciser) de b. On munit l’espace d’arrivée Rn de sa structure euclidienne canonique, on veut justifier
l’existence de :

min
x∈Rp
∥f (x)−b∥

et trouver un vecteur réalisant ce minimum. Cela revient à chercher :

min
y∈Im(f )

∥y−b∥ .

D’après la partie précédente, ce minimum est atteint lorsque y est le projeté orthogonal de b sur le
sous-espace Im(f ) de E.

Notons que si f est injective (i.e. rg(f ) = p) alors ce vecteur est unique ; dans le cas contraire, tout
vecteur de la forme pIm(f )(b) + z, avec z ∈ ker(f ), convient également.

Proposition X-12 (version matricielle)

Soit n et p deux entiers avec 1 ⩽ p ⩽ n, A ∈Mn,p(R) de rang p et B ∈Mn,1(R).

Alors il existe un unique X0 ∈Mp,1(R) minimisant l’expression ∥AX −B∥ surMn,1(R).

Exercice C-130

Soit A =


1 2
2 0
1 1

 et B =


0
1
2

.

Déterminer l’unique X ∈M2,1(R) qui minimise ∥AX −B∥.
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