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2 Chapitre XI - Calcul différentiel

A - Éléments de topologie de Rn

Définition XI-1

Soit a ∈Rn et r ∈]0,+∞[.

1. On appelle boule ouverte de centre a et de rayon r l’ensemble :

B(a, r) = {x ∈Rn ; ∥x− a∥ < r} .

C’est l’ensemble des vecteurs de Rn situés à une distance strictement inférieure à r de a.
2. On appelle boule fermée de centre a et de rayon r l’ensemble :

Bf (a, r) = {x ∈Rn ; ∥x− a∥ ⩽ r} .

C’est l’ensemble des vecteurs de Rn situés à une distance inférieure ou égale à r de a.
3. On appelle sphère de centre a et de rayon r l’ensemble :

{x ∈Rn ; ∥x− a∥ = r} .

C’est l’ensemble des vecteurs de Rn situés à une distance égale à r de a.

1 ▷ Dans R :

2 ▷ Dans R2 :

3 ▷ Dans R3 :

Exemples

2025-2026 Sébastien PELLERIN



A - Éléments de topologie deRn 3

Définition XI-2

On dit qu’une partie U de Rn est ouverte si :

∀a ∈U , ∃r ∈]0,+∞[ / B(a, r) ⊂U .

1 ▷ Dans R, un intervalle ]a,b[ et R∗ sont des ouverts.

2 ▷ Dans Rn, une boule ouverte est un ouvert mais une boule fermée n’est pas ouverte.

3 ▷ Dans Rn, Rn est un ouvert.

Exemples
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4 Chapitre XI - Calcul différentiel

4 ▷ Une union d’ouverts de Rn est un ouvert de Rn.

5 ▷ Une intersection finie d’ouverts de Rn est un ouvert de Rn.

Définition XI-3

On dit qu’une partie F de Rn est fermée si son complémentaire Rn \F est un ouvert de Rn.

1 ▷ Dans R, un intervalle [a,b], R+, R− sont des fermés.

2 ▷ Dans Rn, une boule fermée est un fermé.

3 ▷ Dans Rn, Rn est un fermé.

Exemples
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A - Éléments de topologie deRn 5

4 ▷ Une intersection de fermés de Rn est un fermé de Rn.

5 ▷ Une réunion finie de fermés de Rn est un fermé de Rn.

Remarques

1 ▷ Un produit cartésien d’ouverts de Rn est un ouvert de Rn.

Un produit cartésien de fermés de Rn est un fermé de Rn.

Par exemple, (R∗)n est un ouvert de Rn, (R+)2 est un fermé de R2, ]a,b[×]c,d[ est un ouvert de R2.
2 ▷ Il existe des parties ni ouvertes, ni fermées (par exemple R∗+ ×R+ dans R2).
3 ▷ Soit ϕ :Rn→R une fonction continue et r > 0 :

▷ la partie {x ∈Rn ; ϕ(x) < r} est un ouvert de Rn ;
▷ la partie {x ∈Rn ; ϕ(x) ⩽ r} est un fermé de Rn ;
▷ la partie {x ∈Rn ; ϕ(x) = r} est un fermé de Rn.

Définition XI-4

On dit qu’une partie A de Rn est bornée s’il existe un réel K ⩾ 0 tel que, pour tout x ∈ A, ∥x∥ ⩽ K.

Cela revient à dire que A est contenue dans une boule centrée en l’origine.

Exercice C-131

Préciser si les ensembles suivants sont des parties ouvertes, fermées, bornées :

1. A1 =
{
(x,y) ∈R2 ; x+ 2y = 5

}
;

2. A2 =
{
(x,y) ∈R2 ; x > 0, y > 0 et x+ y < 1

}
;

3. A3 = {x ∈Rn ; ⟨u,x⟩ ⩾ 0} ;
4. A4 = {x ∈Rn ; ⟨u,x⟩ = 0} où u ∈Rn\{0}.

Exercice C-132

Montrer que tout sous-espace vectoriel de Rn est un fermé.

Sébastien PELLERIN 2025-2026



6 Chapitre XI - Calcul différentiel

Remarque

Ce qui a été étudié dans le premier chapitre sur les fonctions de plusieurs variables (les définitions et
résultats concernant la continuité ou le caractère C 1, ainsi que la définition des dérivées partielles) se
généralise ou est encore vrai pour des fonctions définies sur un ouvert (non vide) de Rn.

Par exemple, si U est un ouvert de Rn alors une fonction f : U → R est de classe C 1 sur U si les
dérivées partielles existent et sont continues en chaque point de U .

Pour tout a ∈U , la fonction f admet alors en a un unique développement limité à l’ordre 1 : il existe
ε :U →R telle que, pour h ∈Rn vérifiant a + h ∈U ,

f (a + h) = f (a) + ⟨∇(f )(a),h⟩+ ∥h∥ε(h) avec ε(h) −→
h→0Rn

0.

B - Fonctions de classe C 2 sur un ouvert de Rn

B.1 - Classe C 2 et matrice hessienne

Définition XI-5

Soit U un ouvert de Rn.

On dit qu’une fonction f :U →R est de classe C 2 sur U si, pour tout (i, j) ∈ ⟦1,n⟧2, la dérivée
partielle d’ordre 2 d’indice (i, j) existe et est continue sur U .

Remarque

Comme pour le cas C 1, les combinaisons linéaires, les produits et quotients de fonctions de classe C 2

sur un ouvert U ou encore la composition par une fonction d’une variable de classe C 2 restent de
classe C 2 sur U .

1 ▷ Montrons que f :]0,+∞[2→R,x 7→ ln(x) + ln(y)− xy2 est de classe C 2.

2 ▷ Les fonctions polynomiales sont de classe C 2 sur tout ouvert de Rn.

Exemples
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B - Fonctions de classe C 2 sur un ouvert deRn 7

3 ▷ Montrons que f :Rn→R, (x1, . . . ,xn) 7→ e−(x2
1+···+x2

n) est de classe C 2.

Définition XI-6

Soit U un ouvert deRn et f :U →R admettant des dérivées partielles d’ordre 2 pour tout couple
(i, j) ∈ ⟦1,n⟧2.

La matrice hessienne de f en a ∈U , notée ∇2f (a), est la matrice deMn(R), définie par :

∇2f (a) =
(
∂2
i,jf (a)

)
(i,j)∈[1,n]]2

=


∂2

1,1f (a) ∂2
1,2f (a) · · · ∂2

1,nf (a)
∂2

2,1f (a) ∂2
2,2f (a) · · · ∂2

2,nf (a)
...

...
...

...
∂2
n,1f (a) ∂2

2,2f (a) · · · ∂2
n,nf (a)

 .

1 ▷ Considérons la fonction polynomiale (de classe C 2) définie sur R2 par :

f (x,y) = ax2 + by2 + cxy + dx+ ey + f .

2 ▷ Considérons la fonction g :Rn→R,x 7→ ∥x∥2 c’est-à-dire :

g(x1, . . . ,xn) = x2
1 + x2

2 + . . .+ x2
n =

n∑
i=1

x2
i .

Exemples
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8 Chapitre XI - Calcul différentiel

3 ▷ Considérons la fonction h :Rn→R, (x1, . . . ,xn) 7→
n∑
i=1

x2
i +

 n∑
i=1

xi

2

−
n∑
i=1

xi .

Théorème XI-7 (de Schwarz)

Soit f définie sur un ouvert U de R
n.

Si f est de classe C 2 sur U alors, pour tout (i, j) ∈ ⟦1,n⟧2 et tout a ∈U : ∂2
j,if (a) = ∂2

i,jf (a).

Corollaire XI-8

La matrice hessienne en un point d’une fonction de classe C 2 est symétrique.

Corollaire XI-9

La matrice hessienne en un point d’une fonction de classe C 2 est diagonalisable dans une base
orthonormée.

Exercice C-133

Soit f la fonction définie sur R3 par : f (x,y,z) = xex(y
2+z2+1).

1. Montrer que f est de classe C 2 sur R3.
2. Déterminer le seul point critique a de f .
3. Écrire la hessienne de f au point a et vérifier qu’elle est diagonale.

B.2 - Forme quadratique et développement limité d’ordre 2

On rappelle que la forme quadratique associée à une matrice symétrique A ∈Mn(R) est l’application
définie sur Rn par : q(h) = tHAH où H est la matrice des coordonnées de h dans la base canonique de
R

n.

On a vu que :

▷ (∀u ∈Rn, q(u) ⩾ 0) ⇐⇒ Sp(A) ⊂R+ ;
▷ (∀u ∈Rn, q(u) ⩽ 0) ⇐⇒ Sp(A) ⊂R−.

2025-2026 Sébastien PELLERIN



B - Fonctions de classe C 2 sur un ouvert deRn 9

Soit U un ouvert de Rn et f :U →R de classe C 2.

On peut considérer la forme quadratique associée à la matrice hessienne de f en a, notée qa et
définie par :

∀h = (h1, . . . ,hn) ∈Rn, qa(h) = tH
(
∇2f (a)

)
H où H =


h1
...
hn

 ,
c’est-à-dire :

qa(h) =
∑

(i,j)∈⟦1,n⟧2

∂2
i,jf (a)hihj =

n∑
i=1

∂2
iif (a)h2

i + 2
∑
i<j

∂2
i,jf (a)hihj .

➯ Formes quadratiques et matrices hessiennes

Soit h ∈Rn tel que le segment [a;a + h] = {a + th ; t ∈ [0,1]} soit inclus dans U .

On considère la fonction ga,h : [0,1]→U , t 7→ f (a + th).

Alors la fonction ga,h est de classe C 2 sur [0,1] et : g ′′a,h(t) = qa+th(h).

En particulier : g ′′a,h(0) = qa(h).

➯ Dérivées directionnelles

Remarque

Le nombre qa(h) = g ′′a,h(0) est appelé la dérivée directionnelle seconde de f en a dans la direction h.

Son signe indique la convexité de la fonction t 7→ f (a + th).

Démonstration

On sait que ga,h est une fonction de classe C 1 sur [0,1] et, pour tout t ∈ [0,1], on a :

g ′a,h(t) = ⟨∇f (a + th),h⟩ =
n∑
i=1

∂if (a + th)hi où h = (h1, . . . ,hn).

Comme f est de classe C 2, les ∂if sont de classe C 1 donc la fonction t 7→ ∂if (a + th) est dérivable et
l’expression de sa dérivée est :

n∑
j=1

∂2
j,if (a + th)hj .

Sébastien PELLERIN 2025-2026



10 Chapitre XI - Calcul différentiel

On en déduit que g ′a,h est dérivable et l’expression de sa dérivée est :

n∑
i=1

( n∑
j=1

∂2
j,if (a + th)hj

)
hi = qa+th(h).

Proposition XI-10 (développement limité à l’ordre 2)

Soit U un ouvert de Rn et f :U →R de classe C 2.

Pour tout a ∈U , il existe un voisinage V de 0
R

n dans Rn, une fonction ε : V →R telle que pour
tout h ∈ V , on ait :

f (a + h) = f (a) + ⟨∇f (a),h⟩+ 1
2
qa(h) + ∥h∥2ε(h) et ε(h) −→

h→0Rn
0

où qa est la forme quadratique associée à ∇2f (a).

Soit f :R2→R, (x,y) 7→ xy + xey .

Il s’agit d’une fonction de classe C 2 sur R2. Écrivons son développement limité en (0,0).

Exemple
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C - Applications à l’optimisation 11

C - Applications à l’optimisation

C.1 - Notion d’extremum

Soit U un ouvert de Rn, f :U →R et a ∈U .

1. On dit que f a un maximum local en a s’il existe un réel r > 0 tel que :

∀x ∈ B(a, r), f (a) ⩾ f (x).

2. On dit que f a un minimum local en a s’il existe un réel r > 0 tel que :

∀x ∈ B(a, r), f (a) ⩽ f (x).

3. On dit que f a un extremum local en a si f a un maximum local ou un minimum local en a.

Si de plus f est de classeC 1 surU alors on dit que a est un point critique de f lorsque ∇f (a) = 0Rn ,
c’est-à-dire :

∀k ∈ ⟦1,n⟧, ∂kf (a) = 0.

➯ Définitions

Proposition XI-11

Soit U un ouvert de Rn, f :U →R de classe C 1 sur U et a ∈U .

Si f a un extremum en a alors a est un point critique de f .

Proposition XI-12 (condition d’existence d’un extremum global)

Soit U un ouvert de Rn, f :U →R et A une partie de U .

Si f est continue et si A est fermé borné alors la restriction de f à A admet un maximum global et
un minimum global.

C’est-à-dire qu’il existe a et b dans A tels que :

∀x ∈ A, f (a) ⩽ f (x) ⩽ f (b).

C.2 - Condition suffisante d’ordre 2

Proposition XI-13

Soit U un ouvert de Rn, f :U →R de classe C 2 sur U et a ∈U un point critique de f .

1. Si Sp
(
∇2f (a)

)
⊂R

∗
+, alors f admet un minimum local en a.

2. Si Sp
(
∇2f (a)

)
⊂R

∗
−, alors f admet un maximum local en a.

3. Si Sp
(
∇2f (a)

)
contient deux réels non nuls de signes distincts, alors f n’admet pas d’extremum

en a.

Sébastien PELLERIN 2025-2026



12 Chapitre XI - Calcul différentiel

Démonstration

Remarques

1 ▷ Les réciproques sont fausses. Par exemple, la fonction définie sur R2 par f (x,y) = x4 + y4 admet
un minimum en (0,0) mais la matrice hessienne est nulle en ce point et le spectre est donc réduit à
{0}.

2 ▷ Considérons dans R2, la fonction fα,β définie par : fα,β(x,y) = αx2 + βy2.

Sa matrice hessienne est Hα,β =
(
2α 0
0 2β

)
.

Il y a donc trois cas selon que α et β soient tous deux positifs, tous deux négatifs ou de signes
opposés.

2025-2026 Sébastien PELLERIN



C - Applications à l’optimisation 13

Exercice C-134

Étudier les éventuels extremums de la fonction :

f :]0,+∞[2→R, (x,y) 7→ f (x,y) =
x

y2 + y2 +
1
x
.

Exercice C-135

Étudier les éventuels extremums de la fonction :

f :R2→R, (x,y) 7→ f (x,y) = x(x+ 1)2 − y2.

Exercice C-136

Étudier les éventuels extremums de la fonction :

f :Rn→R, (x1, . . . ,xn) 7→ f (x1, . . . ,xn) =
n∑

k=1

x2
k +

( n∑
k=1

xk

)2

−
n∑

k=1

xk .

Exercice C-137

Soit f de classe C 2 sur un ouvert U de R2, (a,b) ∈ U un point critique de f et H =
(
r s
s t

)
la

matrice hessienne de f en (a,b).

Comment peut-on caractériser les différents cas de la proposition à l’aide des réels r, s et t ?

Sébastien PELLERIN 2025-2026



14 Chapitre XI - Calcul différentiel

C.3 - Exploitation de la convexité

Définition XI-14

Une partie C de Rn est dite convexe si, pour tout couple (a,b) de C, le segment [a,b] est contenu
dans C, autrement dit :

∀(a,b) ∈ C2, ∀λ ∈ [0,1], λa + (1−λ)b ∈ C.

Proposition XI-15

Soit U un ouvert convexe de Rn, f :U →R de classe C 2 sur U et a ∈U un point critique de f .

1. Si pour tout x ∈U , Sp
(
∇2f (x)

)
⊂R+, alors f admet un minimum global en a.

2. Si pour tout x ∈U , Sp
(
∇2f (x)

)
⊂R−, alors f admet un maximum global en a.

Étudions les extremums éventuels de f :R3→R, (x,y,z) 7→ 11x2 + 3y2 + 3z2 − 10xy + 10xz − 6yz + 1.
Exemple
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C - Applications à l’optimisation 15

C.4 - Cas des extremums avec contrainte d’égalités linéaires

On considère le système linéaire suivant : 
g1(x) = b1
...

gp(x) = bp

où les gi sont des formes linéaires sur Rn donc sont de la forme :

gi : x = (x1, . . . ,xn) 7→ λi,1x1 + · · ·+λi,nxn = ⟨(λi,1, . . . ,λi,n),x⟩.

L’ensemble C des solutions de ce système correspond à
p⋂

i=1

{
x ∈Rn ; gi(x) = bi

}
donc est fermé.

Notons que la fonction gi est de gradient constant : ∀x ∈Rn, ∇gi(x) = (λi,1, . . . ,λi,n).

On note H l’ensemble des solutions du système linéaire homogène associé :
g1(x) = 0
...

gp(x) = 0

,

c’est un sous-espace vectoriel de Rn et on a (en notant ∇gi au lieu de ∇gi(x)) :

H =
p⋂

i=1

ker(gi) =
p⋂

i=1

Vect(∇gi)⊥ i.e. H = Vect(∇g1, . . . ,∇gp)⊥.

Définition XI-16

Soit U un ouvert de Rn et f :U →R.

On dit que f admet un extremum sous la contrainte C si la restriction de f à C admet un
extremum.

Par exemple, f admet un maximum local en a ∈ C sous la contrainte C s’il existe un réel r > 0 tel
que :

∀x ∈ B(a, r)∩C , f (x) ⩽ f (a).

De même pour un minimum local, un maximum global ou un minimum global.

Proposition et définition XI-17

Soit U un ouvert de Rn, f :U →R de classe C 1 et a ∈C .

Si f admet un extremum en a sous la contrainte C alors ∇f (a) ∈H ⊥.

Un vecteur a ∈C tel que ∇f (a) ∈H ⊥ est appelé un point critique de f sous la contrainte C .

Sébastien PELLERIN 2025-2026



16 Chapitre XI - Calcul différentiel

Corollaire XI-18

Soit U un ouvert de Rn, f :U →R de classe C 1 et a ∈C .

Si f admet un extremum en a sous la contrainte C alors il existe des réels λ1, . . . ,λp tels que :

∇f (a) = λ1∇g1(a) + · · ·+λp∇gp(a).

On peut parfois écrire par abus de notation : ∇f (a) = λ1∇g1 + · · ·+λp∇gp.

Démonstration
Justifions la proposition dans le cas, par exemple, d’un maximum local. Il existe donc un réel r > 0 tel que :

∀x ∈ B(a, r)∩C , f (x) ⩽ f (a).

Soit h ∈H et g : t 7→ f (a + th) (qui est définie au voisinage de 0 puisque a ∈U et U est un ouvert).

Pour t proche de 0, on a a + th ∈ B(a, r) et d’autre part a + th ∈C (puisque a ∈C et th ∈H ) donc :

g(t) = f (a + th) ⩽ f (a) = g(0)

donc g admet un maximum local en 0.

On a donc g ′(0) = 0 or g ′(t) = ⟨∇f (a + th),h⟩ donc :

⟨∇f (a),h⟩ = 0 i.e. ∇f (a)⊥h.

On a donc ∇f (a) ∈H ⊥.

1 ▷ Déterminons les extremums de la fonction f : R3 → R, (x,y,z) 7→ x2 + y2 + 2z2 sous la contrainte
C : 2x − y + z = 3.

On note H l’ensemble des solutions de l’équation 2x − y + z = 0 alors H ⊥ = Vect
(
(2,−1,1)

)
.

Un vecteur a = (a0, a1, a2) est un point critique de f sous la contrainte C si seulement si :

2a0 − a1 + a2 = 3
∃λ ∈R / (2a0,2a1,4a2) = λ(2,−1,1)

i.e.


2a0 − a1 + a2 = 3

∃λ ∈R /


a0 = λ

2a1 = −λ
4a2 = λ

c’est-à-dire qu’il existe λ ∈R tel que :

2λ−
(
− 1

2
λ
)

+
1
4
λ = 3, a0 = λ, a1 = −1

2
λ, a2 =

1
4
λ

soit :
11
4
λ = 3, a0 = λ, a1 = −1

2
λ, a2 =

1
4
λ

donc si et seulement si :
a0 =

12
11

, a1 = − 6
11

, a2 =
3

11

donc f possède un unique point critique sous la contrainte C , c’est a =
(

12
11 ,−

6
11 ,

3
11

)
.

Exemples
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C - Applications à l’optimisation 17

Soit h tel que a + h ∈C , on a :

f (a + h) = f (a) + ⟨∇f (a),h⟩+ 1
2
qa(h) + ∥h∥2 ε(h)

avec ε(h) −−−−−−−→
h→0Rn

0.

On a a + h ∈C or a ∈C donc h ∈H or ∇f (a) ∈H ⊥ donc ⟨∇f (a),h⟩ = 0.

On a ∇2f (a) =

2 0 0
0 2 0
0 0 4

 donc qa(h) > 0 pour tout h ∈H non nul.

Donc f admet un minimum en a sous la contrainte C .
2 ▷ Déterminons les extremums de la fonction f : R3 → R, (x,y,z) 7→ 3x2 + 2y2 + z2 sous la contrainte
C : 3x − 2y + z = 6.

⋆ On note H l’ensemble des solutions de l’équation 3x − 2y + z = 0 alors H ⊥ = Vect
(
(3,−2,1)

)
.

Un vecteur a = (a0, a1, a2) est un point critique de f sous la contrainte C si seulement si :

3a0 − 2a1 + a2 = 6
∃λ ∈R / (6a0,4a1,2a2) = λ(3,−2,1)

i.e.


3a0 − 2a1 + a2 = 6

∃λ ∈R /


6a0 = 3λ
4a1 = −2λ
2a2 = λ

c’est-à-dire qu’il existe λ ∈R tel que :

3
2
λ− 2

(
− 1

2
λ
)

+
1
2
λ = 6, a0 =

1
2
λ, a1 = −1

2
λ, a2 =

1
2
λ

soit :
3λ = 6, a0 =

1
2
λ, a1 = −1

2
λ, a2 =

1
2
λ

donc si et seulement si :
a0 = 1, a1 = −1, a2 = 1

donc f possède un unique point critique sous la contrainte C , c’est a = (1,−1,1).

Soit h tel que a + h ∈C , on a comme dans l’exemple précédent :

f (a + h) = f (a) + 0 +
1
2
qa(h) + ∥h∥2 ε(h)

avec ε(h) −−−−−−−→
h→0Rn

0.

De plus ∇2f (a) =

6 0 0
0 4 0
0 0 2

 donc qa(h) > 0 pour tout h ∈H non nul.

Donc f admet un minimum en a sous la contrainte C .

⋆ On peut aussi déterminer une base de H : H = Vect
(
(1,0,−3), (0,1,2)

)
et l’on est amené à résoudre le

système : 
3x − 2y + z = 6
∇f (x,y,z)⊥(1,0,−3)
∇f (x,y,z)⊥(0,1,2)

,
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ce qui conduit au système : 
3x − 2y + z = 6

6x − 6z = 0

4y + 4z = 0

i.e.


x = 1

y = −1

z = 1

.

Puis on continue comme dans la première méthode.

⋆ On peut aussi se ramener à la détermination des extremums de la fonction g :R2→R définie par
g(x,y) = f (x,y,−3x+ 2y + 6).

Exercice C-138

Étudier les extremums de f : (x,y,z) 7→ xy + yz + zx sous la contrainte x+ y + z = 1.

Exercice C-139

On considère la fonction f définie sur R4 par f : (x,y,z, t) 7→ x2 + y2 + z2 + t2.

Déterminer l’unique point critique de f sous les contraintes x+ y + z − t = 3 et 2x − y + z + t = −6,
puis étudier si f admet un extremum sous ces contraintes.
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