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2 Chapitre Xl - Calcul différentiel

A - Eléments de topologie de R”
Définition XI-1

Soitae R" et r €]0,+o0|.
1. On appelle boule ouverte de centre a et de rayon r ’'ensemble :

B(a,r)={xeR"; |[x—a| <r}.

C’est I’ensemble des vecteurs de IR” situés a une distance strictement inférieure a r de a.
2. On appelle boule fermée de centre a et de rayon r I’ensemble :

Be(a,r)={xeR"; [x-all <7}

C’est 'ensemble des vecteurs de R" situés a une distance inférieure ou égale a r de a.
3. On appelle sphére de centre a et de rayon r 'ensemble :

xeR"; |x—al =r}.

C’est 'ensemble des vecteurs de R" situés a une distance égale a r de a.

Exemples
1> Dans R :

2> Dans R?:

3> Dans R3:
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A - Eléments de topologie de R" 3

Définition XI-2

On dit qu’une partie Z de R" est ouverte si :

VYae %, dr €]0,+c0[ / B(a,r) C%.

Exemples
1> Dans R, un intervalle g, b[ et R* sont des ouverts.

2> Dans R", une boule ouverte est un ouvert mais une boule fermée n’est pas ouverte.

3> Dans R"”, R" est un ouvert.
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Chapitre Xl - Calcul différentiel

4> Une union d’ouverts de R"” est un ouvert de R".

5> Une intersect

ion

finie d’ouverts de R" est

un

ouvert de

Définition XI-3

On dit qu'une partie # de R" est fermée si son complémentaire R” \ & est un ouvert de R".

Exemples

1> Dans R, un intervalle [4,b], R, R_ sont des fermés.

2> Dans IR"”, une boule fermée est un fermé.

3> Dans R", R"

est

un fermé.
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A - Eléments de topologie de R" 5

4> Une intersection de fermés de R" est un fermé de R".

5> Une réunion finie de fermés de R"” est un fermé de R".

Remarques

1> Un produit cartésien d’ouverts de R” est un ouvert de R".

Un produit cartésien de fermés de R” est un fermé de R".

Par exemple, (R*)" est un ouvert de R”, (R, )? est un fermé de R?, ]a, b[x]c, d[ est un ouvert de R?.
2> Il existe des parties ni ouvertes, ni fermées (par exemple R* x R, dans R?).
3» Soit @ : R” — R une fonction continue et r > 0 :

> la partie {x e R" ; ¢(x) < r} est un ouvert de R";
> la partie {x € R" ; @(x) < r} est un fermé de R";
> la partie {x e R" ; @(x) =r} est un fermé de R".

Définition XI-4

On dit qu'une partie A de R" est bornée s’il existe un réel K > 0 tel que, pour tout x € A, ||x|| < K

Cela revient a dire que A est contenue dans une boule centrée en l'origine.

Exercice C-131 ‘
Préciser si les ensembles suivants sont des parties ouvertes, fermées, bornées :
1. A :{( ,y) €R?; x+2y:5};
2. Ay ={(xy)eR?; x>0,p>0etx+p<1};
{
{

3. A3 ={xeR"; (ux)>0};
4. Ay ={xeR"; (u,x) =0} ouueR"\{0}.

Exercice C-132 ‘

Montrer que tout sous-espace vectoriel de R" est un fermé.
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6 Chapitre Xl - Calcul différentiel

Remarque

Ce qui a été étudié dans le premier chapitre sur les fonctions de plusieurs variables (les définitions et
résultats concernant la continuité ou le caractére 6!, ainsi que la définition des dérivées partielles) se
généralise ou est encore vrai pour des fonctions définies sur un ouvert (non vide) de R".

Par exemple, si % est un ouvert de R” alors une fonction f :  — R est de classe ¢! sur % si les
dérivées partielles existent et sont continues en chaque point de % .

Pour tout a € %, la fonction f admet alors en a un unique développement limité a 'ordre 1 : il existe
e: % — R telle que, pour h € R” vérifianta+h e %,

f(a+h)=f(a)+(V(f)(a),h)+|h|eh) avec eh) — 0.

h—0Rn

B - Fonctions de classe %2 sur un ouvert de R”

B.1 - Classe &2 et matrice hessienne
Définition XI-5

Soit % un ouvert de R".

On dit qu’une fonction f : % — R est de classe ¢ sur % si, pour tout (i, ) € [1,n]?, 1a dérivée
partielle d’ordre 2 d’indice (i, j) existe et est continue sur % .

Remarque

Comme pour le cas €', les combinaisons linéaires, les produits et quotients de fonctions de classe &2

sur un ouvert % ou encore la composition par une fonction d’une variable de classe € ? restent de
classe €2 sur %.

Exemples
1> Montrons que f :]0,+co[?— R, x > In(x) + In(y) — xp? est de classe €.

2> Les fonctions polynomiales sont de classe %2 sur tout ouvert de R”.
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B - Fonctions de classe €2 sur un ouvert de R" 7

2
3> Montrons que f : R" — R, (xq,...,x,) > e ™ ++%1) est de classe €2.

Définition XI-6
Soit Z un ouvert de R" et f : Z — R admettant des dérivées partielles d’ordre 2 pour tout couple
(i,j) € [1,n]>.
La matrice hessienne de f en a € %, notée V>f(a), est la matrice de ./Z,(R), définie par :

0} ,f(a) 9i,f(a) --- 9i,f(a)
9%,f(a) d5,f(a) - 93,f(a)

Vf(a)=(9;,f(a)) =

(i,j)e[1,n]]? : : : :
ai,1f(a) a%,zf(a) a%,nf(a)

Exemples
1> Considérons la fonction polynomiale (de classe ¢?) définie sur R? par :

f(x,p)=ax* + by’ +cxy +dx+ey + f.

2> Considérons la fonction g : R" — R,x > ||x||? c’est-a-dire :

g(xl,...,x,,):x12+x%+...+xn =

()
=
<o
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8 Chapitre Xl - Calcul différentiel

Théoreme XI-7 (de Schwarz)

Soit f définie sur un ouvert % de R".

Si f est de classe €2 sur % alors, pour tout (i,j) € [1,n]]* et tout a € % : 9]2’l-f(a) = al%jf(a).

Corollaire XI-8

La matrice hessienne en un point d’une fonction de classe 62 est symétrique.

Corollaire XI-9

La matrice hessienne en un point d’une fonction de classe & est diagonalisable dans une base
orthonormée.

Exercice C-133]

Soit f la fonction définie sur R3 par: f(x,y,2) = xe (9742741,

1. Montrer que f est de classe €2 sur R3.
2. Déterminer le seul point critique a de f.
3. Ecrire la hessienne de f au point a et vérifier qu’elle est diagonale.

B.2 - Forme quadratique et développement limité d’ordre 2

On rappelle que la forme quadratique associée a une matrice symétrique A € /4, (RR) est I'application
définie sur R"” par: g(h) = "HAH ou H est la matrice des coordonnées de h dans la base canonique de
R™.

On a vu que:
> (YueR", g(u) >
> (YueR", q(u) <
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B - Fonctions de classe €2 sur un ouvert de R" 9

) Formes quadratiques et matrices hessiennes
Soit % un ouvert de R" et f : % — R de classe €.

On peut considérer la forme quadratique associée a la matrice hessienne de f en a, notée g, et
définie par :

hy
Vh=(hy,...,h,) €R", ga(h) ="H(V?f(a))H ouH=| : |,
hy,
c’est-a-dire :
ga(h) = Z 92, (@)h;h; _Za hf+2Za§jf(a)hlh

(i,j)el1,n]? i<j

) Dérivées directionnelles
Soit h € R" tel que le segment [a;a+h]={a+th; t €[0,1]} soit inclus dans % .

On consideére la fonction g, p, : [0,1] = %, t — f(a+ th).

Alors la fonction g, 1, est de classe 62 sur [0,1] et : San(t) = Garm(h).

En particulier : g} (0) = g, (h).

Remarque
Le nombre q,(h) = g7/, (0) est appelé la dérivée directionnelle seconde de f en a dans la direction h.

Son signe indique la convexité de la fonction t — f(a + th).

o
3]
J
8]

Valeur de la dérivée directionnelle seconde
o

Démonstration

On sait que g, 1, est une fonction de classe ! sur [0,1] et, pour tout t € [0,1], on a:
& n(t) = (Vf(a+th),h) = Za fa+th)h; ot h=(hy,....hy).

Comme f est de classe €2, les d;f sont de classe €' donc la fonction t > d; f(a + th) est dérivable et
I'expression de sa dérivée est :
Za a+th)h
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10 Chapitre Xl - Calcul différentiel

On en déduit que g, , est dérivable et I'expression de sa dérivée est :

> (2 sta s it i = gt
1'j=1

i=

Proposition XI-10 (développement limité a ’ordre 2)

Soit % un ouvert de R" et f : % — R de classe €.

Pour tout a € %, il existe un voisinage 7 de Og» dans R", une fonction ¢ : 7" — R telle que pour
touth € 7/, on ait :

fla+h) = Fla) + (Vf (@) )+ Sqa(h) + [lPelh) et e(h) —> 0

h_)OlR"

ol g, est la forme quadratique associée & V2f(a).

Exemple
Soit f : R? —» R, (x,y) = xp + xe?.

1l s’agit d’une fonction de classe €2 sur R?. Ecrivons son développement limité en (0, 0).

1

fi(x, ) eR?—xy+xe¥

)

Lapproximation (x, y) — x+2xy
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C - Applications a 'optimisation

C.1 - Notion d’extremum

) Définitions
Soit Z un ouvertde R”, f :% - Retac.

1. On dit que f a un maximum local en a s’il existe un réel r > 0 tel que :
Vx e B(a,r), f(a) > f(x).

2. On dit que f a un minimum local en a s’il existe un réel r > 0 tel que :
Vx € B(a,r), f(a) < f(x).

3. On dit que f a un extremum local en a si f a un maximum local ou un minimum local en a.

Side plus f est de classe ! sur % alors on dit que a est un point critique de f lorsque Vf(a) = Oy,
c’est-a-dire :

Vke[1,n], drf(a)=0.

Proposition XI-11

Soit % un ouvert de R", f : % — R de classe €' sur # etac %.

Si f a un extremum en a alors a est un point critique de f.

Proposition XI-12 (condition d’existence d’un extremum global)

Soit % un ouvertde R", f : % — R et A une partie de .

Si f est continue et si A est fermé borné alors la restriction de f a A admet un maximum global et
un minimum global.

C’est-a-dire qu'’il existe a et b dans A tels que :

Vx e A, f(a)< f(x) < f(b).

C.2 - Condition suffisante d’ordre 2

Proposition XI-13

Soit % un ouvert de R”, f : % — R de classe €% sur % et a € % un point critique de f.
1. SiSp (sz(a)) C IR}, alors f admet un minimum local en a.
2. SiSp (sz(a)) C R*, alors f admet un maximum local en a.

3. SiSp (sz(a)) contient deux réels non nuls de signes distincts, alors f n'admet pas d’extremum
en a.
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12 Chapitre Xl - Calcul différentiel

Démonstration

Remarques

1> Les réciproques sont fausses. Par exemple, la fonction définie sur R? par f(x,y) = x* + p* admet
un minimum en (0, 0) mais la matrice hessienne est nulle en ce point et le spectre est donc réduit a
{0}.

2> Considérons dans R?, la fonction fo,p définie par : f,5(x,y) = ax? + py>.

Sa matrice hessienne est H, g = (2oc 0 )

0 2B

Il y a donc trois cas selon que «a et f soient tous deux positifs, tous deux négatifs ou de signes
opposés.

Valeurs propres positives Valeurs propres négatives Valeurs propres de signes opposés
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Exercice C-134

Etudier les éventuels extremums de la fonction :

X 1
£:]0,+00[*> R, (x,9) — f(x,9) = ' +9° =

Exercice C-135

Etudier les éventuels extremums de la fonction :

f: R? > R, (x,v) f(x,9) :x(x+1)2—y2.

Exercice C-136]

Etudier les éventuels extremums de la fonction :

n n 2 n
f:R" >R, (x1,...,%,) = f(x1,...,x,) = Zx,f+( xk) —Zxk.
1

Exercice C—137‘

Soit f de classe €2 sur un ouvert % de R?, (a,b) € % un point critique de f et H = (: S) la
matrice hessienne de f en (a, b).

Comment peut-on caractériser les différents cas de la proposition a 1’aide des réels r, s et t?
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14 Chapitre Xl - Calcul différentiel

C.3 - Exploitation de la convexité

Définition XI-14

Une partie C de R" est dite convexe si, pour tout couple (a,b) de C, le segment [a, b] est contenu
dans C, autrement dit :
V(a,b)eC? YAe[0,1], Aa+(1-A\)beC.

Proposition XI-15

Soit % un ouvert convexe de R", f : % — R de classe €2 sur et a € % un point critique de f.
1. Si pour toutx € Z, Sp (sz(x)) CR,, alors f admet un minimum global en a.

2. Si pour tout x e %, Sp(V? x)) CIR_, alors f admet un maximum global en a.
p p g

Exemple
Etudions les extremums éventuels de f : R3 — R, (x,y,z) > 11x? + 3p% + 322 = 10xy + 10xz — 6z + 1.
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C.4 - Cas des extremums avec contrainte d’égalités linéaires

On considere le systeme linéaire suivant :

g1(x) =by

gp(x) = bp
ou les g; sont des formes linéaires sur R"” donc sont de la forme :
giX= (xl,...,xn) — Aillxl + -+ }\i,nxn = <(X1'11,...,Xi,n),x>.

P
L’ensemble & des solutions de ce systeme correspond a ﬂ {x eR"; gi(x) = b,-} donc est fermé.
i=1

Notons que la fonction g; est de gradient constant : Vx € R", Vg;(x) = (Ai1,..., Aj ).

On note # l’ensemble des solutions du systéme linéaire homogene associé :

g1(x)=0

gp(x) =0
c’est un sous-espace vectoriel de R” et on a (en notant Vg; au lieu de Vg;(x)) :

p p
K = ler(gi) = QVect(Vgi)L i.e. Z”:Vect(Vgl,...,Vgp)L.
1= 1=

Définition XI-16

Soit % un ouvertde R" et f : % — R.

On dit que f admet un extremum sous la contrainte € si la restriction de f a ¥ admet un
extremum.

Par exemple, f admet un maximum local en a € € sous la contrainte &€ s’il existe un réel r > 0 tel
que :
VxeB(a,r)NE, f(x)< f(a).

De méme pour un minimum local, un maximum global ou un minimum global.
Proposition et définition XI-17

Soit % un ouvert de R”, f : % — R declasse €' etac é.
Si f admet un extremum en a sous la contrainte & alors Vf(a) € Z*.

Un vecteur a € 6 tel que Vf(a) € '+ est appelé un point critique de f sous la contrainte € .
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Corollaire XI-18

Soit % un ouvert de R", f : % — R de classe €' etac €.

Si f admet un extremum en a sous la contrainte € alors il existe des réels Ay, ..., }\p tels que :

Vf(a)=AVgi(a)+---+A,Vgy(a).

On peut parfois écrire par abus de notation : Vf(a) = A Vg +---+ A, Vg,.

Démonstration

Justifions la proposition dans le cas, par exemple, d’'un maximum local. Il existe donc un réel r > 0 tel que :

Vx €B(a,r)NE, f(x)< f(a)

Soith e # et g:t > f(a+th) (qui est définie au voisinage de 0 puisque a € % et Z est un ouvert).

Pour t proche de 0, on a a + th € B(a,r) et d’autre part a+ th € € (puisque a € € et th € #') donc:

g(t)=f(a+th)< f(a) =g(0)

donc g admet un maximum local en 0.

On a donc g’(0) =0 or g’(t) =(Vf(a+th),h) donc:

(Vf(a),h)=0 i.e. Vf(a)Lh.

On adonc Vf(a)e Z+.

Exemples

1>

2025-2026

Déterminons les extremums de la fonction f : R3 5 R, (%,,2) — x2 + y2 + 222 sous la contrainte
€: 2x-y+z=3.

On note # 1’ensemble des solutions de ’équation 2x —y + z = 0 alors Z'+ = Vect((Z,—l, 1))
Un vecteur a = (ag,ay,a;) est un point critique de f sous la contrainte € si seulement si :

2ap0—ay+a, =3

2a0—a1+a2:3 P 610:)\
3XER/(2Q0,2Q1,4a2)=)\(2,—1,1) s dAeR/ 2{112—}\
4612:)\

c’est-a-dire qu’il existe A € R tel que :
1 1 1 1
2x—(—5w+zx:aaozxalz—zxazzzx

soit : . X X
ZKZ& ag = A, ulz_zxr azzz)\

donc si et seulement si :

12 6 3
ag=-—,01 =—=,0, = —
Tt T T T 1
donc f possede un unique point critique sous la contrainte &, c’est a = (%,—%, %)
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2>

Soithtelquea+he%,ona:

fla+h)=f(a)+(Vf(a)h)+ %qa(h) +|Ih|> e(h)

avec e(h) —— 0.
h—)O]Rn

Onaa+he% orae% donche# or Vf(a)e Z+ donc (Vf(a),h)=0.

2. 00
OnaV?f(a)= [0 2 O] donc g,(h) > 0 pour tout h € # non nul.
0 0 4

Donc f admet un minimum en a sous la contrainte €.

Déterminons les extremums de la fonction f : R? > R, (%,2) — 3x2 + 23}2 +2z
€: 3x-2y+z=6.

2 sous la contrainte

* On note # ’ensemble des solutions de I’équation 3x — 2y +z = 0 alors Z'+ = Vect((3,—2, 1))

Un vecteur a = (ag, ay,a,) est un point critique de f sous la contrainte € si seulement si :

3a0—2a1+a2:6

3&0—2(114-&12:6 i 6&023)\
AN e R/ (6ay,4a1,2a,) = M(3,-2,1) T )ANER/ {4day =27
2[12 :)\

c’est-a-dire qu’il existe A € R tel que :

3 1 1 1 1 1
E)\—Z(—E)\)+§X:6, ag = E)\, ay :—E)\, ap = E}\

soit : . X ,
3)\: 6, apg = EA,, ap = —EX, a) = E)\

donc si et seulement si :
110:1, alz—l, [12:1

donc f posséde un unique point critique sous la contrainte &, c’esta = (1,-1,1).
Soit h tel que a+h € €, on a comme dans 'exemple précédent :
1
fla+h) = f(a)+0+qa(h)+ b e(h)

avec ¢(h) ——— 0.

h‘)O]Rn
6 0 0
De plus V?f(a)=|0 4 0[donc g,(h)> 0 pour tout h € # non nul.
0 0 2

Donc f admet un minimum en a sous la contrainte €.

* On peut aussi déterminer une base de 7 : # = Vect((l, 0,-3),(0,1, 2)) et 'on est amené a résoudre le
systeme :

3x-2y+z=6

Vf(x,v,2)1(1,0,-3) ,

Vf(x,,2)1(0,1,2)
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ce qui conduit au systéme :

3x-2y+ z=6 b =1
6x -6z=0 ie. y =-1.
4y+4z=0 z=1

Puis on continue comme dans la premiére méthode.

* On peut aussi se ramener a la détermination des extremums de la fonction g : R? — R définie par

g2(x,v) = f(x,9,-3x + 2y + 6).

Exercice C—138\

Etudier les extremums de f : (x,9,z) > Xy + vz + zx sous la contrainte x +y +z = 1.

Exercice C-139

On considere la fonction f définie sur R4 par f : (x,v,2,t) — x% + y2 +2z2+ 2,

Déterminer 'unique point critique de f sous les contraintes x+y+z—t=3 et 2x—y+z+1t=-6,
puis étudier si f admet un extremum sous ces contraintes.
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