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2 Chapitre XII - Convergence et approximation

A - Inégalités

Proposition XII-1 (inégalité de Markov)

Soit X une variable aléatoire réelle positive admettant une espérance.

Pour tout réel λ > 0, on a :

P(X ⩾ λ) ⩽
E(X)
λ

.

Démonstration

De façon générale, pour tout événement A, on définit l’application indicatrice de A, notée 1lA, par :

∀ω ∈Ω, 1lA(ω) =

1 si ω ∈ A
0 sinon .

L’application 1lA est une variable aléatoire qui suit une loi de Bernoulli de paramètre p = P(A) donc :

P(A) = E(1lA).

Par conséquent, pour toute variable aléatoire positive X, la croissance de l’espérance donne :

X ⩾ λ1l(X⩾λ) puis E(X) ⩾ λE(1l(X⩾λ)) = λP(X ⩾ λ).
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B - Convergence en probabilité 3

Proposition XII-2 (inégalité de Bienaymé-Tchebychev)

Soit X une variable aléatoire réelle admettant une variance.

Pour tout réel ε > 0, on a :

P

(
|X −E(X)| ⩾ ε

)
⩽

V (X)
ε2 .

Démonstration

Si E(X) = 10 et σ(X) = 0,1 sont les valeurs exactes de la moyenne et de l’écart-type d’une variable aléatoire
X, sans aucune indication particulière sur la loi de X, on sait que X prendra des valeurs entre 9,7 et 10,3
avec une probabilité supérieure à 0,88. En effet :

P(|X − 10| ⩾ 0,3) ⩽
(0,1)2

(0,3)2 =
1
9

puis P(|X − 10| < 0,3) = 1−P(|X − 10| ⩾ 0,3) ⩾ 1− 1
9
≈ 0,88.

Exemple

Exercice C-140

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ.

Montrer que : P(X ⩾ λ2) ⩽
1
λ

et P(X ⩾ 2λ) ⩽
1
λ

.

Exercice C-141

Soit Y une variable aléatoire suivant une loi binomiale de paramètres n et p.

Montrer que pour tout ε > 0, on a : P
( ∣∣∣∣∣1nY− p

∣∣∣∣∣ ⩾ ε

)
⩽

1
4nε2 .

B - Convergence en probabilité

Définition XII-3

Soit (Xn)n∈N et X des variables aléatoires réelles toutes définies sur un même espace probabilisé
(Ω,A,P).

On dit que la suite (Xn) converge en probabilité vers X et on note Xn
P−−−−−−→

n→+∞
X lorsque :

∀ε > 0, P(|Xn −X| ⩾ ε) −−−−−−→
n→+∞

0.
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4 Chapitre XII - Convergence et approximation

Soit (Xn) une suite de variables aléatoires mutuellement indépendantes vérifiant :

∀n ∈N, Xn ↪→U ([0,1]).

Étudions la convergence en probabilité de la variable Yn = max(X1,X2, . . . ,Xn).

Soit ε > 0, on a :

P (|Yn − 1| ⩾ ε) = P (1−Yn ⩾ ε)

= P (Yn ⩽ 1− ε)

= P

 n⋂
i=1

(Xi ⩽ 1− ε)


=

n∏
i=1

P (Xi ⩽ 1− ε) indépendance des variables aléatoires

= (F(1− ε))n où F est la fonction de répartition de la loi U ([0,1])

= (1− ε)n

−−−−−−→
n→+∞

0 car 0 < 1− ε < 1.

Donc la suite (Yn)n∈N∗ converge en probabilité vers la variable aléatoire presque sûrement constante à 1.

Exemple

Remarques

1 ▷ Une suite de variables à densité peut donc converger en probabilité vers une variable discrète.
2 ▷ Il n’y a pas unicité de la limite (si elle existe).

Si (Xn)n∈N est une suite de variables aléatoires définies sur un même espace probabilisé et X,X′

des variables aléatoires définies sur le même espace et telles que

Xn
P−−−−−−→

n→+∞
X et Xn

P−−−−−−→
n→+∞

X′

alors on montre que P (X , X′) = 0
3 ▷ Soit (Xn)n∈N et (Yn)n∈N deux suites de variables aléatoires sur un même espace probabilisé qui

convergent en probabilité vers X et Y.

Alors :
∀λ ∈R, λXn

P−−−−−−→
n→+∞

λX et Xn + Yn
P−−−−−−→

n→+∞
X + Y.

Exercice C-142

Soit (Xn) une suite de variables aléatoires mutuellement indépendantes vérifiant :

∀n ∈N, Xn ↪→U ([0,1]).

Pour tout n ∈N∗, on pose Zn = min(X1,X2, . . . ,Xn).

1. Étudier la convergence en probabilité de la suite (Zn).
2. Étudier la convergence en probabilité de la suite (Yn + Zn) (où Yn désigne le maximum des

mêmes variables).
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B - Convergence en probabilité 5

Exercice C-143

On suppose que, pour tout n ∈N∗, on a :

Xn(Ω) = {0;n}, P(Xn = 0) = 1− 1
n

et P(Xn = n) =
1
n
.

1. Montrer que la suite (Xn) converge en probabilité vers la variable certaine X = 0.
2. Que peut-on dire des espérances ?

Proposition XII-4

Soit (Xn)n∈N une suite de variables aléatoires sur un espace probabilisé (Ω,A,P).

Si la suite (Xn)n∈N converge en probabilité vers une variable X et si f est une fonction continue
sur R, alors :

f (Xn)
P−−−−−−→

n→+∞
f (X).

Exercice C-144

Démontrer la proposition dans le cas où f est une fonction lipschitzienne.

Théorème XII-5 (Loi faible des grands nombres)

Soit (Xn)n∈N une suite de variables aléatoires mutuellement indépendantes définies sur un même
espace probabilisé (Ω,A,P).

Soit X une variable également définie sur (Ω,A,P) et qui admet un moment d’ordre 2.

Si les variables aléatoires Xn et X suivent la même loi alors la suite des variables aléatoires Xn,
moyenne arithmétique des n variables X1,X2, · · · ,Xn, converge en probabilité vers son espérance
mathématique E(X) :

Xn =
1
n

n∑
i=1

Xi
P−−−−−−→

n→+∞
E(X).

Démonstration
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6 Chapitre XII - Convergence et approximation

Remarques

1 ▷ Cas de la loi binomiale

Soit (Yn)n∈N∗ une suite de variables aléatoires sur un espace probabilisé (Ω,A,P) avec :

∀n ∈N∗, Yn ↪→B (n,p).

Il existe une suite de variables aléatoires (Xn)n∈N∗ mutuellement indépendantes, de même loi de

Bernoulli de paramètre p, telles que pour tout n ∈N∗, Yn et
n∑
i=1

Xi aient la même loi. La loi faible

des grands nombres donne :
Yn

n
P−−−−−−→

n→+∞
Z

où Z est une variable aléatoire certaine égale à p.
2 ▷ Considérons une expérience aléatoire et un événement A de probabilité p associé à cette expérience.

On répète n fois l’expérience de manière indépendante et on note Xn le nombre de fois où A est
réalisé donc Xn suit la loi binomiale de paramètres n et p.

On note Fn( A) =
Xn

n
la fréquence empirique d’apparition de l’événement A. D’après la loi faible

des grands nombres :
∀ε > 0, P (|Fn( A)− p| > ε) −→

n→+∞
0

autrement dit, la fréquence d’apparition Fn( A) d’un événement A converge en probabilité vers sa
probabilité théorique p.

Cela légitime après coup l’approche fréquentiste de la notion de probabilité : la probabilité d’un
événement est la fréquence que l’on observerait si on effectuait une infinité de fois l’expérience
«dans des conditions parfaitement identiques».

C - Convergence en loi

Définition XII-6

Soit X et (Xn)n∈N des variables aléatoires. On dit que la suite (Xn) converge en loi vers X et on

note Xn
L−−→ X lorsque en tout point de continuité x de FX, on a :

FXn
(x) −−−−−−→

n→+∞
FX(x).

Remarques

1 ▷ Ce type de convergence est faible puisque qu’il n’y a même pas unicité de la limite : si X et Y ont

même loi alors Xn
L−−→ Y.

2 ▷ Toutes ces variables aléatoires ne sont pas nécessairement définies sur les mêmes espaces probabi-
lisés.
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C - Convergence en loi 7

1 ▷ Soit (Xn) telle que Xn ↪→U
([
− 1

n ,
1
n

])
.

Montrer que (Xn) converge en loi vers la variable certaine égale à 0.

Commençons par observer les représentations graphiques de FX1
, FX2

et FX3
:

1 1 1

2 ▷ Pour tout n ∈N∗, on vérifie que la fonction fn définie sur R par :

fn(t) = n2t exp
(
−n2t2/2

)
1l
R+

(x)

est une densité de probabilité. Soit (Xn)n∈N∗ une suite de variables aléatoires à densité où fn est une
densité de Xn. Vérifions par le calcul que (Xn)n∈N∗ converge en loi vers X où X est une variable presque
sûrement constante à 0.

Exemples
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8 Chapitre XII - Convergence et approximation

3 ▷ Soit (Xn) une suite de variables aléatoires mutuellement indépendantes vérifiant :

∀n ∈N, Xn ↪→U ([0,1]).

Étudions la convergence en loi de Yn = max(X1,X2, . . . ,Xn).

4 ▷ Avec les mêmes notations, on note Mn = n(1−Yn). Étudions la convergence en loi de la suite (Mn)n∈N∗ .
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C - Convergence en loi 9

Proposition XII-7

Si la suite (Xn)n∈N converge en loi vers une variable X alors, pour tous points a et b en lesquels F
est continue, on a :

P (a < Xn ⩽ b) −→
n→∞

P(a < X ⩽ b).

Démonstration

Proposition XII-8 (Cas particulier des variables discrètes)

Soit X et (Xn)n∈N des variables aléatoires réelles discrètes à valeurs dansN.

On a Xn
L−−−−−−→

n→+∞
X si et seulement si : ∀k ∈N, P(Xn = k) −−−−−−→

n→+∞
P(X = k).

Démonstration
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10 Chapitre XII - Convergence et approximation

Soit (Xn) une suite de variables aléatoires avec, pour tout n, Xn ↪→P
(

1
n

)
.

Montrons que (Xn) converge en loi vers la variable certaine égale à 0.

Exemple

Remarques

1 ▷ Contrairement au cas de la convergence en probabilité, si (Xn)n∈N et (Yn)n∈N convergent en loi
vers X et Y alors la suite (Xn + Yn)n∈N ne converge pas nécessairement en loi vers X + Y

2 ▷ On montre (mais ce n’est pas au programme) que la convergence en probabilité implique la
convergence en loi mais la réciproque est fausse.

3 ▷ Soit (Xn)n∈N une suite de variables aléatoires qui converge en loi vers une variable X.

Si f :R→R est continue alors la suite (f (Xn))n∈N converge en loi vers la variable f (X).

Proposition XII-9 (convergence de la loi binomiale vers la loi de Poisson)

Soit (Xn) une suite de variables aléatoires avec, pour tout n, Xn ↪→B (n,pn).

On suppose que npn −−−−−−→n→+∞
λ avec λ > 0.

Alors (Xn) converge en loi vers une variable aléatoire de loi P (λ).

Démonstration
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C - Convergence en loi 11

Les diagrammes ci-dessous représentant les lois binomialesB (n;λ/n) et de Poisson P (λ). Plus n est
grand, plus les diagrammes associés aux lois P (λ) etB (n;λ/n) sont proches.

Remarque

Si X ↪→B (n,p), alors pour tout k ∈ ⟦0,n⟧, on a :

P(X = k) =
(
n
k

)
pk(1− p)n−k

mais ce produit peut être délicat à évaluer numériquement lorsque n est «très grand» et p «petit»
(risque d’erreurs d’arrondis par exemple). Il est donc pertinent d’avoir une expression approchée plus
simple ; en posant λ = np, on a :

P(X = k) ≈ P(Z = k) où Z ↪→P (λ).

Dans la pratique, lorsque n ⩾ 30, p ⩽ 0,1 et np < 15, on peut approcherB (n,p) par P (np).

C’est ce qui explique le fait que la loi de Poisson serve à modéliser les fréquences d’apparition des
événements rares.

En moyenne un étudiant d’ECG fait une faute d’orthographe tous les 500 mots. Lors d’une rédaction de
2000 mots, quelle est la probabilité de faire plus de 5 fautes ?

On suppose l’équiprobabilité du «risque de faute» (donc avec une probabilité p = 1
500 ) et que les fautes

arrivent de manière indépendantes. Lors de la rédaction, on a une succession de 2000 expériences de
Bernoulli de paramètre p mutuellement indépendantes. Si X est la variable aléatoire qui compte le nombre
de fautes alors X suit une loi binomialeB (2000,p). La probabilité recherchée est :

P(X ⩾ 5) = 1−P(X < 5) = 1−
4∑

k=0

(
2000
k

)( 1
500

)k (499
500

)2000−k
.

Exemple

Sébastien PELLERIN 2025-2026



12 Chapitre XII - Convergence et approximation

D’après ce qui précède, on peut utiliser l’approximation par la loi de Poisson de paramètre λ = 4 :

P(X ⩾ 5) ≈ 1− e−λ
4∑

k=0

λk

k!
.

Comparons numériquement :

>>> p=1/500

>>> q = 1-p

>>> n = 2000

>>> 1-(q**n+n*p*q**(n-1)+n*(n-1)/2*p**2*q**(n-2)+n*(n-1)*(n-2)/6*p**(3)*q**(n-3)+n*(n

-1)*(n-2)*(n-3)/24*p**4*q**(n-4))

0.371162999567369

>>> lam = 4

>>> import numpy as np

>>> 1-np.exp(-lam)*(1+lam+lam**2/2+lam**3/6+lam**4/24)

0.3711630648201266

D - Théorème limite central

Théorème XII-10 (théorème limite central)

Soit (Xn)n∈N une suite de variables aléatoires sur un espace probabilisé (Ω,A,P).

On suppose que :

▷ les variables (Xn)n∈N∗ sont mutuellement indépendantes ;
▷ les variables (Xn)n∈N∗ ont même loi et admettent une espérance m et une variance σ2 > 0 ;

▷ on note Xn =
1
n

(X1 + · · ·+ Xn) et X
∗
n =
√
n

(
Xn −m

σ

)
.

Alors la suite
(
Xn
∗
)
n∈N∗

converge en loi vers une variable aléatoire suivant la loi normale centrée
réduite.

Autrement dit, pour tous a et b vérifiant −∞ ⩽ a ⩽ b ⩽ +∞, on a :

P(a ⩽ X
∗
n ⩽ b) −→

n→∞
Φ(b)−Φ(a) =

1
√

2π

∫ b

a
e−

1
2 t

2
dt,

où Φ désigne la fonction de répartition de la loi normale centrée réduite.

Corollaire XII-11 (cas de lois binomiales, théorème de Moivre-Laplace)

Soit (Xn)n∈N une suite de variables aléatoires suivant des lois binomialesB (n,p) avec 0 < p < 1,
alors :

X∗n =
Xn −np√
np(1− p)

L−−−−−−→
n→+∞

Z avec Z ↪→N (0,1).

Autrement dit, pour tous a et b vérifiant −∞ ⩽ a ⩽ b ⩽ +∞, on a :

P(a ⩽ X∗n ⩽ b) −→
n→∞

Φ(b)−Φ(a) =
1
√

2π

∫ b

a
e−

1
2 t

2
dt.
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D - Théorème limite central 13

Démonstration

Remarques

1 ▷ Dans la pratique, lorsque n ⩾ 30, np ⩾ 5 et nq ⩾ 5, on approcheB (n,p) par N (np,npq).

Les graphiques ci-dessous représentent les lois de Xn
∗ pour différentes valeurs de n avec également

la courbe représentative de la densité de loi normale centrée réduite.

2 ▷ Notons qu’il y a deux théorèmes de convergence impliquant des lois binomiales.

Dans le cas de convergence vers une loi de Poisson, npn tend vers λ > 0 (donc pn tend vers 0) ; dans
le cas de convergence vers une loi normale, p est une probabilité fixe, strictement positive.
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14 Chapitre XII - Convergence et approximation

1 ▷ On lance une pièce équilibrée 10000 fois et on souhaite calculer la probabilité que le nombre de «pile»
soit compris dans l’intervalle [4900,5100].

On suppose les lancers mutuellement indépendants.

Si X est la variable aléatoire qui compte le nombre de «pile» alors X ↪→B (n,p) avec n = 10000 et p = 1
2 .

L’espérance de X est np = 5000, l’écart type est
√
np(1− p) = 50.

Évaluons P(4900 ⩽ X ⩽ 5100). Tout d’abord, on a :

P(4900 ⩽ X ⩽ 5100) = P(np − 100 ⩽ X ⩽ np+ 100)

= P(−100 ⩽ X −np ⩽ 100)

= P

−2 ⩽
X −np√
np(1− p)

⩽ 2


= P(−2 ⩽ X∗ ⩽ 2).

D’après le théorème, on a P(−2 ⩽ X∗ ⩽ 2) ≈ P(−2 ⩽ Z ⩽ 2) avec Z ↪→N (0,1) donc :

P(−2 ⩽ X∗ ⩽ 2) ≈ Φ(2)−Φ(−2) = 2Φ(2)− 1

or Φ(2) ≈ 0,9772 donc :
P(4900 ⩽ X ⩽ 5100) ≈ 0,9544.

2 ▷ Afin d’augmenter le nombre de personnes transportées, une compagnie aérienne vend plus de billets
qu’elle n’a de places en pariant sur les absences de certains de ses passagers.

Considérons un vol d’un appareil contenant ℓ = 400 places. On suppose que q = 8% des passagers
ne pourront être à l’heure pour l’embarquement. La compagnie vend n = 420 billets. On cherche à
calculer le risque de surbooking, c’est-à-dire la probabilité qu’il y ait strictement plus de passagers
présents à l’embarquement que de places disponibles.

On pose X le nombre de personnes présentes à l’embarquement. Si l’on suppose la présence des
passagers indépendante les unes des autres (c’est une hypothèse forte, il peut avoir des familles, un
problème d’accès à l’aéroport), alors X suit une loi binomiale de paramètres n et p, avec p = 1−q = 0,92.

On a E(X) = np = 386,4 et σ(X) =
√
npq ≈ 5,56.

Il y a surbooking lorsque l’événement (X > ℓ) est réalisé.

Tout d’abord, on a :

P(X > ℓ) = P(X −E(X) > ℓ −np)

= P

(
X −E(X)
σ(X)

>
ℓ −np
√
npq

)
.

Le théorème limite central s’applique et l’on a (en notant Z une variable de loi N (0,1)) :

P

(
X −E(X)
σ(X)

>
ℓ −np
√
npq

)
≈ P

(
Z >

ℓ −np
√
npq

)
= 1−Φ

(
ℓ −np
√
npq

)
.

Puisque ℓ−np√
npq ≈ 2,45 et Φ(2,45) ≈ 0,9929, on a :

P(X > ℓ) ≈ 0,0071.

Exemples
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D - Théorème limite central 15

Corollaire XII-12 (convergence des lois de Poisson)

Soit (Xn)n∈N∗ une suite de variables aléatoires telle que Xn ↪→P (nλ) pour tout n ∈N∗.

Alors la suite des variables aléatoires centrées réduites (X∗n)n∈N converge en loi vers une variable
aléatoire suivant une loi normale centrée réduite :

X∗n =
Xn −nλ√

nλ

L−−−−−−→
n→+∞

Z avec Z ↪→N (0;1).

Remarque

Dans la pratique, lorsque λ ⩾ 18, on approche P (λ) par N (λ,λ).
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