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Consignes
• L’énoncé comporte trois exercices.

Ces derniers peuvent être traités dans un ordre quelconque mais doivent être chacun commencés sur une nouvelle page et les
questions doivent être séparées d’une ligne horizontale sur toute la largeur de la page.

• Les documents, calculatrices et téléphones portables ne sont pas autorisés.

• La présentation, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans
l’appréciation des copies.

• Les résultats doivent être mis en valeur et les pages doivent être numérotées.

Exercice 1
Pour tout entier naturel n, on note Rn[x] l’ensemble des polynômes à coefficients réels de degré au plus n.
Pour tout k ∈N, la notation Xk désigne le polynôme x 7→ xk ; en particulier les notations 1 et X0 désignent le
polynôme x 7→ 1 et la notation X désigne le polynôme x 7→ x.
On considère l’application f qui à un polynôme P de Rn[x] associe le polynôme :

f (P) = P′′ − 4XP′ .

1. Étude de f .
Soit n un entier naturel fixé uniquement dans cette question.

a. Justifier que f est un endomorphisme de Rn[x].

b. Calculer f (1), f (X) puis f
(
Xk

)
pour k ∈ ⟦2,n⟧.

c. Établir alors que la matrice An de f dans la base canonique de Rn[x] est triangulaire.
d. Prouver que f est diagonalisable et que chacun de ses espaces propres est de dimension 1.
e. Soit P un vecteur propre de f associé à la valeur propre λ.

Établir que : λ = −4deg(P).
f. En déduire qu’il existe un unique polynôme unitaire (i.e. de coefficient dominant valant 1) Hn de degré n

tel que :
(En) : f (Hn) = −4nHn.

2. Étude de la suite (Hn)n∈N.

a. En dérivant la relation (En), démontrer que :

∀n ⩾ 1, f (H′n) = −4(n− 1)H′n.

b. En déduire que :

∀n ⩾ 1, H′n = nHn−1 et ∀n ⩾ 2, Hn −XHn−1 +
(n− 1)Hn−2

4
= 0.

c. Pourquoi peut-on affirmer que H0 = 1 et H1 = X ?
d. Calculer alors H2 et H3.
e. D’après ce qui précède, la suite un = Hn(1) satisfait à la relation de récurrence :

u0 = 1, u1 = 1, ∀n ⩾ 2, un = un−1 −
(n− 1)un−2

4
.

Écrire un programme en Python calculant u2026.

3. Application aux points critiques d’une fonction à trois variables.
On note U la partie de R3 définie par :

U =
{
(x,y,z) ∈R3 ; x , y et y , z et z , x

}
et on considère la fonction V définie sur U par :

∀(x,y,z) ∈ U, V(x,y,z) = x2 + y2 + z2 − ln |x − y| − ln |y − z| − ln |z − x|.



Soit (α,β,γ) ∈ U.

a. Établir que (α,β,γ) est un point critique de V si et seulement si (α,β,γ) est solution du système :

(S) :


2α(α− γ)(α− β) = 2α− β− γ
2β(β−α)(β− γ) = 2β−α− γ
2γ(γ −α)(γ − β) = 2γ −α− β

b. On introduit le polynôme Q(X) = (X −α)(X − β)(X − γ).
Montrer que (α,β,γ) est solution de (S) si et seulement si Q′′ − 4XQ′ admet pour racines α,β,γ.

c. Prouver que si (α,β,γ) est un point critique de V alors

Q′′ − 4XQ′ = −12Q

puis que Q = H3.
d. Donner alors les points critiques de V.

Exercice 2
On considère un espace euclidien E pour lequel le produit scalaire de deux vecteurs x et y est noté ⟨x,y⟩, tandis
que la norme du vecteur x est notée ∥x∥. Le vecteur nul de E est noté 0E.
On considère aussi un endomorphisme f de E, différent de l’endomorphisme nul, et antisymétrique, c’est-à-dire
qu’il vérifie :

∀(x,y) ∈ E2,⟨f (x), y⟩ = −⟨x,f (y)⟩.
1. Montrer que : ∀x ∈ E, (f (x),x) = 0.

2. Établir l’égalité : Ker(f )⊕ Im(f ) = E.

3. On pose s = f ◦ f . Montrer que s est un endomorphisme symétrique de E et que ses valeurs propres sont
toutes dans R−.

4. On note g l’application qui à tout vecteur x de Im(f ) associe g(x) = f (x) et on pose t = g ◦ g.
a. Montrer que g est un endomorphisme antisymétrique de Im(f ).
b. En déduire que les valeurs propres de t sont toutes dans R∗−.

Dans les deux questions suivantes, on considère une valeur propre λ de t et on note Eλ(t) le sous-espace propre
associé à cette valeur propre.

5. On considère un vecteur e1 non nul de Eλ(t).
a. Montrer que (e1, g (e1)) est une famille d’éléments de Eλ(t) orthogonale et libre.
b. En déduire, en considérant l’orthogonal F2 de Vect(e1, g (e1)) dans Eλ(t), que la dimension de Eλ(t) est

paire et qu’il existe un entier naturel p non nul, ainsi que p vecteurs e1, e2, . . . , ep de Eλ(t), tels que(
e1, g (e1) , e2, g (e2) , . . . , ep, g

(
ep
))

soit une base orthogonale de Eλ(t).

6. Soit k un entier de ⟦1,p⟧.

a. Montrer que l’on a : ∥g (ek)∥2 = −λ∥ek∥2.
b. On considère les vecteurs ek ′ = 1

∥ek∥
ek et e′′k = 1

∥g(ek )∥g (ek).

Établir que g
(
e′k
)

=
√
−λe′′k et g

(
e′′k
)

= −
√
−λe′k .

7. a. Montrer que le rang de f est pair.
b. On pose r = 1

2 rg(f ). Déduire des questions précédentes qu’il existe une base orthonormale B de E et r
réels a1, . . . , ar strictement positifs, non nécessairement distincts, tels que la matrice M de f dans B soit :

M =



0 −a1
a1 0 (0)

0 −a2 (0)
a2 0

. . .
0 −ar

(0) ar 0
0

0


ou M =



0 −a1
a1 0 (0)

0 −a2
a2 0

. . .
(0) 0

ar


.



Exercice 3
Dans ce problème, toutes les variables aléatoires sont supposées définies sur un même espace probabilisé
(Ω,A,P). Si X est une variable aléatoire, on note respectivement E(X) et Var(X) son espérance et sa variance,
sous réserve d’existence.
Le but de ce problème (dont on ne propose ici que les premières parties) est de mettre en évidence quelques
résultats asymptotiques liés au modèle du collectionneur de vignettes. Dans chaque paquet de céréales se
trouve une vignette et il y a en tout des vignettes de n types différents, où n est un entier supérieur ou égal
à 1 . Chacun des n types de vignettes se retrouve avec la même fréquence dans les paquets de céréales. Une
collection est alors complète lorsqu’elle comporte n vignettes de types différents.
On modélise le nombre total de paquets de céréales qu’il est nécessaire d’acheter pour obtenir la collection
complète de n vignettes de types différents par la variable aléatoire notée Cn.
On pose par convention C0 = 0 et pour tout i ∈ ⟦1,n⟧, on note Ci le nombre d’achats de paquets de céréales
nécessaires pour obtenir i vignettes de types différents.
De même, pour tout i ∈ ⟦1,n⟧, on pose Xi = Ci −Ci−1, qui représente le nombre d’achats supplémentaires de
paquets de céréales qu’il est nécessaire d’effectuer pour obtenir une nouvelle vignette d’un type différent des
i − 1 vignettes de types différents déjà obtenues. Par convention, on pose X1 = C1 = 1.
On suppose que les variables aléatoires X1, . . . ,Xn sont mutuellement indépendantes. Enfin, on pose :

Vn =
Cn

n
− ln(n).

1. a. Montrer que :

Cn = X1 + · · ·+ Xn =
n∑
i=1

Xi .

b. Justifier que pour tout i ∈ ⟦1,n⟧, la variable aléatoire Xi suit la loi géométrique G
(
n−i+1

n

)
.

▶ Partie I

Pour tout entier n ⩾ 1, on pose :

Hn =
n∑

k=1

1
k

, Sn =
n∑

k=1

1
k2 .

Nous allons démontrer la convergence de la suite (Sn)n≥1 et déterminer une valeur approchée de sa limite S.

2. a. Montrer que pour tout entier k ⩾ 2, on a l’encadrement :

1
k
− 1
k + 1

⩽
1
k2 ⩽

1
k − 1

− 1
k
.

b. Montrer que pour tout entier n ≥ 2, on a :

3
2
− 1
n+ 1

⩽ Sn ⩽ 2− 1
n
.

c. Montrer que la suite (Sn)n⩾1 est convergente et donner un encadrement de sa limite S.
d. Montrer que pour tout entier n ≥ 1, on a l’encadrement :

1
n+ 1

⩽ S− Sn ⩽
1
n
.

e. En déduire un programme Python qui permette d’obtenir une valeur approchée de S à 10−7-près.

3. Pour tout entier n ⩾ 1, on pose un = Hn − ln(n).

a. Montrer que pour tout entier n ≥ 1, on a l’encadrement :

1
n+ 1

⩽ ln
(n+ 1

n

)
⩽

1
n
.

b. Montrer que pour tout entier n ⩾ 1, on a : 0 ⩽ un ⩽ 1.
c. Montrer que la suite (un)n⩾1 converge vers une certaine limite γ ∈ [0,1].

4. Justifier l’existence de l’espérance de Cn et montrer que E (Cn) = nHn.



5. Justifier l’existence de la variance de Cn et exprimer Var(Cn) en fonction de n,Sn et Hn.

▶ Partie II

6. Soit T1, . . . ,Tn,n variables aléatoires mutuellement indépendantes de même loi exponentielle E(1). On pose :

Mn = max
1⩽i⩽n

Ti .

Montrer que Mn suit la loi de densité fn donnée par :

∀x ∈R, fn(x) =

ne−x (1− e−x)n−1 si x > 0
0 si x ⩽ 0

7. a. Soit Z une variable aléatoire de loi exponentielle E(n+ 1) et indépendante de Mn. On note g la densité de
la loi de Z qui est nulle sur ]−∞,0 ] et continue sur ]0,+∞[. Montrer que pour tout x > 0 et tout t ∈]0,x[,
on a :

fn(t)g(x − t) = (n+ 1)e−(n+1)xnet
(
et − 1

)n−1
.

b. Soit (Zi)i⩾1 une suite de variables aléatoires mutuellement indépendantes telle que pour tout entier i ⩾ 1,
Zi est de loi exponentielle E(i).
Montrer que pour tout entier n ⩾ 1, la variable aléatoire

∑n
i=1 Zi suit la loi de densité fn.

8. On définit la fonction f :R→R+par :

∀x ∈R, f (x) = e−xe−e−x .

Montrer que f est une densité de probabilité sur R. La loi de densité f est appelée loi de Gumbel.

9. a. Soit (Zi)i≥1 la suite de variables aléatoires introduite précédemment. On pose Wn =
n∑
i=1

Zi − ln(n).

Montrer que la fonction de répartition FWn
de Wn est donnée par :

∀x ∈R, FWn
(x) =


(
1− e−x

n

)n
si x > − ln(n)

0 si x ≤ − ln(n)
.

b. Montrer que la suite de variables aléatoires (Wn)n≥1 converge en loi vers une variable aléatoire de loi de
Gumbel.


